Abstract:
A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween. In a further embodiment lateral scaling is used to control device speed for high frequency operation.
Abstract:
A ring cavity light-emitting transistor device, including: a planar semiconductor structure of a semiconductor base layer of a first conductivity type between semiconductor collector and emitter layers of a second conductivity type; base, collector, and emitter metalizations respectively coupled with the base layer, said collector layer, and said emitter layer, the base metalization including at least one annular ring coupled with a surface of the base layer; and an annular ring- shaped optical resonator in a region of the semiconductor structure generally including the interface of the base and emitter regions; whereby application of electrical signals with respect to the base, collector, and emitter metalizations causes light emission in the base layer that propagates in the ring-shaped optical resonator cavity.
Abstract:
A semiconductor light emitting device, including: a heterojunction bipolar light-emitting transistor having a base region between emitter and collector regions; emitter, base, and collector electrodes for coupling electrical signals with the emitter, base, and collector regions, respectively; and a quantum size region in the base region; the base region including a first base sub-region on the emitter side of the quantum size region, and a second base sub-region on the collector side of the quantum size region; and the first and second base sub- regions having asymmetrical band structures. Also disclosed is a method for producing light emission from a two-terminal semiconductor structure, including the following steps: providing a semiconductor structure that includes a first semiconductor junction between an emitter region of a first conductivity type and a base region of a second conductivity type opposite to that of the first conductivity type, and a second semiconductor junction between the base region and a drain region; providing, within the base region, a region exhibiting quantum size effects; providing an emitter electrode coupled with the emitter region; providing a base/drain electrode coupled with the base region and the drain region; and applying signals with respect to the emitter and base/drain electrodes to obtain light emission from the semiconductor structure.
Abstract:
A first form of a method for producing an optical output in substantially linear relationship with an electrical AC signal, includes the following steps: providing a light-emitting transistor having emitter, base, and collector regions, and associated respective emitter, base, and collector terminals, the transistor having a light-emitting output port; applying the AC signal to a first input port defined across a given one of the terminals and a common one of the terminals; applying an amplified version of the AC signal to a second input port defined across a further one of the terminals and the common one of the input terminals; and selecting an amplification of the amplified version of the AC signal to substantially cancel a nonlinearity characteristic of the light emitting transistor. A second form of the method involves predistortion feedback linearization of an optical signal using a light-emitting transistor or transistor laser.