Abstract:
Laminated multi-ply films where one film layer is substantially unpigmented and the other film layer is substantially pigmented can provide a metallic appearance when the substantially unpigmented film layer is cold stretched either prior to lamination or during the lamination step. This surprising result provides an inexpensive way to produce films with a metallic appearance. Trash bags having an inner bag and an outer bag laminated together may be formed according to this process.
Abstract:
In one example embodiment, a laminated film includes an extruded ribbed first film portion that includes multiple ribs, where consecutive ribs are separated by webs that are integral with the ribs. The laminated film also includes an un-ribbed second film portion, and a region of discontinuous lamination between the first film portion and the second film portion. The region of discontinuous lamination includes multiple regions where the first and second film portions are bonded together, and multiple regions where the first and second film portions are not bonded together.
Abstract:
In one example embodiment, a film includes a coextruded structure having both an extruded ribbed skin layer that includes a plurality of ribs, and a core layer. The ribs are spaced apart by a web that is integral with the ribs. The film also includes a voiding agent in the ribs of the skin layer.
Abstract:
One or more implementations of a multi-layer film include a first substantially un-pigmented layer non-continuously bonded to a second pigmented layer. The multi-layer film includes an unexpected appearance differing from the appearance of the pigmented layer. In one or more embodiments, the multi-layer film includes a metallic appearance despite the pigmented layer being devoid of metallic pigment. The multi-layer film also includes areas that are visually distinct from areas of the film with the unexpected appearance. The visually-distinct areas comprise areas in which the first substantially un-pigmented layer non-continuously bonded is in intimate contact with the second pigmented layer. The visually-distinct areas have the appearance of the pigmented layer. One or more implementations also include methods of making multi-layer films and bags with an unexpected appearance and visually-distinct areas.
Abstract:
Methods for creating multi-layered bags with increased or maintained strength involve forming a ribbed pattern in one or more film layers of a multi-layered bag. The method also includes non-continuously laminating the film layers of the multi- layered bag together. In one or more implementation, a transverse direction ring rolling process forms the ribbed pattern and bonds the film layers together. In one or more additional implementations, the ribbed pattern and lamination are formed separately. Still further implementations include forming network patterns one or more film layers of a multi-layered bag. Multi-layered bags formed in accordance with one or more implementations of the present invention include one or more of increased strength or reduced basis weight.
Abstract:
Multi-layered bags include an outer layer or bag and an inner layer or bag that is shorter than the outer layer or bag. The shortened inner layer or bag can stretch or expand to the outer layer or bag when loaded with objects or otherwise strained. Such multi-layered bags can allow for a reduction in thermoplastic material without compromising the strength of the multi-layered bag. In various implementations, the inner layer or bag may be non-continuously laminated, continuously laminated, or joined only along one or more edges to the outer layer or bag. Implementations including non-continuous bonds securing the inner layer or bag to the outer layer or bag can provide additional strength to the bag. Methods of forming multi-layered bags with a shortened inner layer including inserting an inner layer within an outer layer and then joining the layers to form a bag.
Abstract:
A thermoplastic bag for storing food items may include a first sidewall and an opposing second sidewall joined to the first sidewall to define an interior volume. The first and second sidewalls may be made from pliable, sheet-like thermoplastic web material. The sidewalls may be formed with a pattern of ribs. When a tensioning force is applied to the sidewall, the ribs may open so that the sidewall may become generally more planar. Opening the ribs may cause the sidewalls to stretch or expand thereby adding to the overall area of the bag. The thermoplastic material may have a shape memory characteristic that may cause the ribs to reform after the tensioning force is alleviated.
Abstract:
In one example embodiment, a film includes a coextruded structure having both an extruded ribbed skin layer that includes a plurality of ribs, and a core layer. The ribs are spaced apart by a web that is integral with the ribs. The film also includes a coloring agent that is substantially more apparent in the ribs than in the web, such that a contrast in color and/or color intensity between the ribs and the web is visible.
Abstract:
A thermoplastic bag for storing food items may include a first sidewall and a second sidewall joined to the first sidewall to define an interior volume. The first and second sidewalls may be made from pliable thermoplastic material and may be joined together about their edges. To access the interior volume, the first and second top edges of the bag may remain un-joined to provide an opening. The bag may include a deformed portion. The deformed portion may cause some of the material to be offset or lie out of plane with respect to the material prior to deformation. The deformed portion may assist a user in grasping the top of the bag.