摘要:
Disclosed herein is a membrane comprising a bonding layer; and an activation layer disposed on the bonding layer and in contact with it; where the activation layer comprises catalyst nanoparticles that are operative to decompose impurities contained in an aqueous solution to generate gas bubbles that remove a sludge disposed on the membrane. Disclosed herein too is a method of purifying an aqueous solution comprising disposing in the aqueous solution, a membrane that comprises a bonding layer and an activation layer; where the activation layer comprises catalyst nanoparticles; partitioning the aqueous solution into a concentrate portion and a filtrate portion; where the activation layer contacts the concentrate portion; and decomposing impurities contained in the aqueous solution to generate gas bubbles that remove a sludge disposed on the membrane.
摘要:
Provided are processes of removing particulate fouling from a filtration membrane or for preventing membrane fouling by particulate matter. A process capitalizes on reversal of a naturally occurring diisophoretic particle deposition to actively move particulate material away from a membrane. A process includes placing a microparticle including a salt in proximity to a membrane such that the microparticle creates a gradient generated spontaneous electric field or a gradient generated spontaneous chemiphoretic field in the solvent proximal to the membrane that actively draws charged particles away from the membrane thereby removing charged particulate matter away from the membrane or preventing its deposition.
摘要:
Methods of producing a plurality of particle aggregates having a specified number of member particles are provided according to embodiments of the present invention. Specific methods include stimulating a plurality of particles with an aggregation stimulus to form a plurality of particle aggregates and then quenching the aggregation stimulus in order to inhibit further particle aggregation. An individual particle aggregate of the produced plurality of particle aggregates has member particles including at least a first member particle and a second member particle. Member particles of particle aggregates are optionally subjected to fusion to stabilize the particle aggregates. Produced particle aggregates having a specified number of member particles may be purified to enrich for particular aggregates.