摘要:
Crystallization of thin films using pulsed irradiation The method includes continuously irradiating a film having an x-axis and a y-axis, in a first scan in the x-direction of the film with a plurality of line beam laser pulses to form a first set of irradiated regions, translating the film a distance in the y-direction of the film, wherein the distance is less than the length of the line beam, and continuously irradiating the film in a second scan in the negative x-direction of the film with a sequence of line beam laser pulses to form a second set of irradiated regions, wherein each of the second set of irradiated regions overlaps with a portion of the first set of irradiated regions, and wherein each of the first and the second set of irradiated regions upon cooling forms one or more crystallized regions.
摘要:
Collections of laterally crystallized semiconductor islands for use in thin film transistors and systems and methods for making same are described. A display device includes a plurality of thin film transistors (TFTs) on a substrate, such that the TFTs are spaced apart from each other and each include a channel region that has a crystalline microstructure and a direction along which a channel current flows. The channel region of each of the TFTs contains a crystallographic grain that spans the length of that channel region along its channel direction. Each crystallographic grain in the channel region of each of the TFTs is physically disconnected from and crystallographically uncorrelated with each crystallographic grain in the channel region of each adjacent TFT.
摘要:
Process and system for processing a thin film sample, as well as at least one portion of the thin film structure are provided. Irradiation beam pulses can be shaped to define at least one line-type beam pulse, which includes a leading portion, a top portion and a trailing portion, in which at least one part has an intensity sufficient to at least partially melt a film sample. Irradiating a first portion of the film sample to at least partially melt the first portion, and allowing the first portion to resolidify and crystallize to form an approximately uniform area therein. After the irradiation of the first portion of the film sample, irradiating a second portion using a second one of the line-type beam pulses to at least partially melt the second portion, and allowing the second portion to resolidify and crystallize to form an approximately uniform area therein.. A section of the first portion impacted by the top portion of the first one of the line-type beam pulses is prevented from being irradiated by trailing portion of the second one of the line-type beam pulses.
摘要:
Methods of making a polycrystalline silicon thin-film transistor having a uniform microstructure. One exemplary method requires receiving a polycrystalline silicon thin film having a grain structure which is periodic in at least a first direction, and placing at least portions (410, 420) of one or more thin-film transistors on the received film such that they are tilted relative to the periodic structure of the thin film.
摘要:
The present disclosure relates to a new generation of laser-crystallization approaches that can crystallize Si films for large displays at drastically increased effective crystallization rates. The particular scheme presented in this aspect of the disclosure is referred to as the advanced excimer-laser · annealing (AELA) method, and it can be readily configured for manufacturing large OLED TVs using various available and proven technical components. As in ELA, it is mostly a partial-/near-complete- melting-regime-based crystallization approach that can, however, eventually achieve greater than one order of magnitude increase in the effective rate of crystallization than that of the conventional ELA technique utilizing the same laser source.
摘要:
The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.
摘要:
Herein is provided an improved method of sequential lateral solidification of crystalline semiconductor film. The improvement consists of using a pulse laser to create two distinct zones of molten crystals. The laser creates these zones by laterally and in stepwise fashion moving the substrate film beneath it. The crystals form predetermined patterns as they cool. A computer program in memory controls the movement of the substrate film.
摘要:
A process and system for processing a thin film sample (e.g., a semiconductor thin film), as well as the thin film structure are provided. In particular, a beam generator can be controlled to emit at least one beam pulse. With this beam pulse, at least one portion of the film sample is irradiated with sufficient intensity to fully melt such section of the sample throughout its thickness, and the beam pulse having a predetermined shape. This portion of the film sample is allowed to resolidify, and the re-solidified at least one portion is composed of a first area and a second area. Upon the re-solidification thereof, the first area includes large grains, and the second area has a region formed through nucleation. The first area surrounds the second area and has a grain structure which is different from a grain structure of the second area. The second area is configured to facilitate thereon an active region of an electronic device.
摘要:
Method and system for generating a metal thin film with a uniform crystalline orientation and a controlled crystalline microstructure are provided. For example, a metal layer is irradiated with a pulsed laser to completely melt the film throughout its entire thickness. The metal layer can then resolidify to form grains with a substantially uniform orientation. The resolidified metal layer can be irradiated with a sequential lateral solidification technique to modify the crystalline microstructure ( e.g. , create larger grains, single-crystal regions, grain boundary controlled microstructures, etc.) The metal layer can be irradiated by patterning a beam using a mask which includes a first region capable of attenuating the pulsed laser and a second region allowing complete irradiation of sections of the thin film being impinged by the masked laser beam. An inverse dot-patterned mask can be used, the microstructure that may have substantially the same as the geometric pattern as that of the dots of the mask.
摘要:
Method and systems for crystallizing a thin film provide an optics system configured to produce a laser spot beam directed towards the thin film and truncate the laser spot beam before the laser spot beam comes into contact with the thin film. The truncated laser spot beam is continually translated in a first direction while irradiating an amorphous silicon area of the thin film to generate a molten zone in the irradiated amorphous silicon area, where the thin film cools and solidifies to form crystal grains.