Abstract:
Systems and methods are directed to controlling the amount of power supplied by an engine for a transport refrigeration system (TRS). An engine load is estimated and compared with a maximum allowable power supply from an engine. The engine load can be automatically adjusted according to results of the comparison. An automatic adjustment of the amount of power supplied by the engine is provided, to ensure that the engine is operating within a preset window of operation and compliant with emission legislation.
Abstract:
A transport refrigeration system (TRS) and method of operating a TRS having a sorption subsystem are disclosed. The TRS includes a refrigeration subsystem and a sorption subsystem. The refrigeration subsystem includes a refrigerant, a compressor, a refrigerant condenser, a refrigerant expansion device, and a refrigerant evaporator in fluid communication such that the refrigerant can flow therethrough. The sorption subsystem includes a heat transfer fluid, a heat source, a boiler, a sorption condenser, a sorption expansion valve, a sorption evaporator, and a pump in fluid communication such that the heat transfer fluid can flow therethrough. The sorption evaporator is in thermal communication with the refrigeration subsystem.
Abstract:
A temperature control system includes a compressor, a condenser, an evaporator, a receiver, and an accumulator. A valve is positioned between the evaporator and the receiver. An evacuation line has a first end in fluid communication with heat transfer fluid between the valve and the receiver, and a second end in fluid communication with the accumulator. The evacuation line provides for flow of the heat transfer fluid from both of the first heat exchanger and the receiver to the accumulator during an evacuation mode of operation of the temperature control system. The valve can take the form of a check valve or an expansion valve without a bleed port.
Abstract:
A temperature control system for a container includes a refrigeration circuit having a primary fluid circulating therein and a secondary fluid circuit in communication with a first compartment of the container and a second compartment of the container. The secondary fluid circuit has a secondary fluid separate from the primary fluid circulating therein. The secondary fluid circuit includes a first heat exchange module in communication with an interior load space of the first compartment and a second heat exchange module in communication with an interior load space of the second compartment. Each of the first and second heat exchange modules includes a pump, a heater, a heat exchanger, and a three-way valve. A heat exchange interface between the refrigeration circuit and the secondary fluid circuit is operable to transfer heat from the secondary fluid to the primary fluid.
Abstract:
A transport refrigeration unit (TRU) includes a compressor. The TRU further includes a condenser disposed downstream of the compressor. The TRU further includes an expansion device disposed downstream of the condenser. The TRU farther includes a first flow control device disposed downstream of the condenser. The TRU farther includes a first evaporator disposed downstream of the expansion device and the first flow control device. The first evaporator is disposed upstream of a second flow control device. The second evaporator is disposed downstream of the first flow control device, the expansion device, and the second flow control device. The second evaporator includes a thermal accumulator. The second flow control device disposed upstream of the compressor.
Abstract:
Systems and methods are described herein to use a discharge pressure of a compressor to drive refrigerant in a refrigeration system. Particularly, systems and methods are described herein to help recover liquid refrigerant from a liquid refrigerant section and/or a condenser coil to be used in a heating/defrost mode in a transport refrigerant unit (TRU). The liquid refrigerant can be recovered by directing the discharge refrigerant of the compressor to a liquid refrigerant section, which may include a receiver tank, a dryer and associated refrigerant lines, and/or a condenser coil. The discharge pressure of the discharge port can help drive refrigerant trapped in the liquid refrigerant section and/or the condenser coil into the heating/defrost branch of the TRU, which may include an evaporator coil, an accumulator tank and/or associated refrigerant lines.