Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a body, a wall extending inside of the body and a plurality of vortex promoting features arranged in a helical pattern along the wall.
Abstract:
A mold for manufacturing a casted workpiece is, at least in-part, manufactured utilizing an additive manufacturing process. The mold may have a core having non-line-of-sight features that are additively manufactured and in contact with an outer shell of a wax mold and/or an outer shell of a casting mold of the mold. The outer shell of either the wax or casting molds may also be additively manufactured, and the shell of the casting mold may be additively manufactured as one unitary piece to the core.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including a first engine component and a second engine component. The first engine component has a mate face adjacent a mate face of the second engine component. The engine further includes a seal between the mate face of the first engine component and the mate face of the second engine component. The seal establishes three points of contact with each mate face in at least one condition.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a pedestal that traverses a flow channel disposed between a first wall and a second wall. The pedestal includes at least one interior bore configured to communicate a cooling fluid inside of the pedestal.
Abstract:
This disclosure relates to a gas turbine engine. The engine includes a component having a first wall and a second wall spaced-apart from the first wall. The component further includes a cooling passageway provided in part by a helical wall between the first wall and the second wall.
Abstract:
A gas turbine engine component includes a structure having a surface configured to be exposed to a hot working fluid. The surface includes a recessed pocket that is circumscribed by an overhang. At least one cooling groove is provided by the overhang.
Abstract:
A gas turbine engine airfoil includes an airfoil structure including an exterior surface that is provided by an exterior wall that has a leading edge. A radially extending interior wall within the airfoil structure separates first and second radial cooling passages. The first cooling passage is arranged near the leading edge. A radially extending trench is in the leading edge. An impingement hole is provided in the interior wall and is configured to direct a cooling fluid from the second cooling passage to the first cooling passage and onto the exterior wall at the leading edge.
Abstract:
A cooling circuit for a gas turbine engine comprises a first wall having a first surface facing a first cavity and a second surface facing away from the first cavity. A second wall is spaced outwardly of the second surface of the first wall to provide at least one second cavity. Cooling fluid is configured to flow from the first cavity and exit to an external surface of the second wall via at least one hole to provide cooling to the external surface. A gas turbine engine and a method of forming a cooling circuit for a gas turbine engine are also disclosed.
Abstract:
A component for use in a gas turbine engine includes a first section, a second section, and a functionally graded section. The first section is made of a metal material. The second section is made of a ceramic material and/or a ceramic matrix composite material. The functionally graded section is disposed between the first section and the second section.
Abstract:
An additive manufacturing system and method of operation includes a build table for supporting a powder bed that is packed through the use of a vibration inducing device proximate to the build table. Through this packing, voids of the bed produced by larger particles of a mixed powder are filled with smaller particles. After or during such packing of particles, the powder bed is leveled utilizing a leveling arm, then selected regions of the bed are melted utilizing an energy gun.