Abstract:
Embodiments of the subject invention relate to a method and apparatus for providing a apparatus that can function as a photovoltaic cell, for example during the day, and can provide solid state lighting, for example at night. The apparatus can therefore function as a lighting window. An embodiment can integrate an at least partially transparent one-side emitting OLED and a photovoltaic cell. The photovoltaic cell can be sensitive to infrared light, for example light having a wavelength greater than 1 µm. The apparatus can be arranged such that the one direction in which the OLED emits is toward the inside of a building or other structure and not out into the environment.
Abstract:
Imaging devices include an IR up-conversion device on a CMOS imaging sensor (CIS) where the up-conversion device comprises a transparent multilayer stack. The multilayer stack includes an IR sensitizing layer and a light emitting layer situated between a transparent anode and a transparent cathode. In embodiments of the invention, the multilayer stack is formed on a transparent support that is coupled to the CIS by a mechanical fastener or an adhesive or by lamination. In another embodiment of the invention, the CIS functions as a supporting substrate for formation of the multilayer stack.
Abstract:
Embodiments of the invention are directed to a transparent up-conversion device having two transparent electrodes. In embodiments of the invention, the up-conversion device comprises a stack of layers proceeding from a transparent substrate including an anode, a hole blocking layer, an IR sensitizing layer, a hole transport layer, a light emitting layer, an electron transport layer, a cathode, and an antireflective layer. In an embodiment of the invention, the up-conversion device includes an IR pass visible blocking layer,
Abstract:
Embodiments described herein generally relate to monodisperse nanoparticles that are capable of absorbing infrared radiation and generating charge carriers. In some cases, at least a portion of the nanoparticles are nanocrystals. In certain embodiments, the monodisperse, IR-absorbing nanocrystals are formed according to a method comprising a nanocrystal formation step comprising adding a first precursor solution comprising a first element of the nanocrystal to a second precursor solution comprising a second element of the nanocrystal to form a first mixed precursor solution, where the molar ratio of the first element to the second element in the first mixed precursor solution is above a nucleation threshold. The method may further comprise a nanocrystal growth step comprising adding the first precursor solution to the first mixed precursor solution to form a second mixed precursor solution, where the molar ratio of the first element to the second element in the second mixed precursor solution is below the nucleation threshold
Abstract:
Embodiments of the subject invention relate to solar panels, methods of fabricating solar panels, and methods of using solar panels to capture and store solar energy. An embodiment of a solar panel can include a photovoltaic cell that is sensitive to visible light and an infrared photovoltaic cell that is sensitive to light having a wavelength of greater than 0.70 mum.
Abstract:
Embodiments of the subject invention relate to a method and apparatus for providing a apparatus that can function as a photovoltaic cell, for example during the day, and can provide solid state lighting, for example at night. The apparatus can therefore function as a lighting window. An embodiment can integrate an at least partially transparent one-side emitting OLED and a photovoltaic cell. The photovoltaic cell can be sensitive to infrared light, for example light having a wavelength greater than 1 µm. The apparatus can be arranged such that the one direction in which the OLED emits is toward the inside of a building or other structure and not out into the environment.
Abstract:
Embodiments of the subject invention relate to a method and apparatus for providing an at: least partially transparent one-side emitting OLED. The at least partially transparent one-side emitting OLED can include a mirror, such as a mirror substrate, substrate with a transparent anode and a transparent cathode. The mirror can allow at least a portion of the visible spectrum of light to pass through, while also reflecting at least another portion of the visible spectrum of light. The mirror can reflect at least a portion of the visible light emitted by a light emitting layer of the OLED incident on a first surface of the mirror, while allowing another portion of the visible light incident on a second surface of the mirror to pass through the mirror.
Abstract:
Embodiments of the subject invention relate to solar panels, methods of fabricating solar panels, and methods of using solar panels to capture and store solar energy. An embodiment of a solar panel can include a photovoltaic cell that is sensitive to visible light and an infrared photovoltaic cell that is sensitive to light having a wavelength of greater than 0.70 µm.
Abstract:
Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLED coupled to the photodetector.
Abstract:
Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLED coupled to the photodetector.