Abstract:
Methods and systems for olefin polymerization are provided. The method for olefin polymerization can include flowing a catalyst through an injection nozzle and into a fluidized bed disposed within a reactor. The method can also include flowing a feed comprising one or more monomers, one or more inert fluids, or a combination thereof through the injection nozzle and into the fluidized bed. The feed can be at a temperature greater than ambient temperature. The method can also include contacting one or more olefins with the catalyst within the fluidized bed at conditions sufficient to produce a polyolefin.
Abstract:
Embodiments are directed towards methods of making bimodal polyethylenes, wherein the methods include a plurality of cycles of ratio adjustments.
Abstract:
Embodiments of the present disclosure are directed towards methods for controlling a polymerization reaction including determining an instantaneous density model for a gas-phase polymerization, and utilizing the instantaneous density model to monitor the polymerization reaction to determine if a threshold instantaneous density is reached.
Abstract:
Embodiments of the present disclosure are directed towards catalyst formulations including a metallocene and a stearic compound selected from bis 2-hydroxyethyl stearyl amine, aluminum distearate, and combinations thereof, where the metallocene is represented by the following formula: (Formula (I)) wherein each n-PR is n-propyl, and each X is independently CH 3 , Cl, or F.
Abstract:
Methods for olefin polymerization are described. The methods include a) forming a first polyolefin under a first set of polymerization conditions in the presence of a first catalyst composition and a first concentration of at least a first continuity additive composition, the first polyolefin composition having a target density, 1, and a target Flow Index, FI1; and b) forming a second polyolefin composition under a second set of polymerization conditions in the presence of a second catalyst composition and a second concentration of a second continuity additive composition, the second polyolefin composition having a target density, 2, and a target Flow Index, FI2; wherein the process is essentially free of providing a polymerization neutralizing composition between steps a) and b).
Abstract:
The use of induced condensing agent (ICA) in fluidized bed gas phase reactor systems enables higher production rates but can affect the resulting polyolefins melt index. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, by altering the concentration of olefin monomer within the reactor system.
Abstract:
Polyolefin polymerization performed by contacting in a reactor an olefin monomer and optionally a comonomer with a catalyst system in the presence of induced condensing agents (ICA) and optionally hydrogen. The ICA may include two or more ICA components where the composition of the ICA (i.e ., the concentration of each ICA component) may affect the polyolefin production rate. Changes to the relative concentration of the two or more ICA components may be according to ICA equivalency factors that allow for increasing the polyolefin production rate while maintain a sticking temperature, increasing polyolefin production rate while increasing the dew point approach temperature of the ICA, or a combination thereof.
Abstract:
Embodiments of the present disclosure are directed towards catalyst formulations including a metallocene and a stearic compound selected from bis 2-hydroxyethyl stearyl amine, aluminum distearate, and combinations thereof, where the metallocene is represented by the following formula: (Formula (I)) wherein each n-PR is n-propyl, and each X is independently CH 3 , Cl, or F.
Abstract:
The present disclosure provides a method of maintaining a target value of a melt flow index of a polyethylene polymer product being synthesized with a metallocene catalyst in a fluidized bed gas phase reactor. The method includes producing the polyethylene polymer product at the target value of the melt flow index with a metallocene catalyst in a fluidized bed gas phase reactor at a steady state in which the fluidized bed gas phase reactor is at a first reactor temperature and receives feeds of hydrogen and ethylene at a hydrogen to ethylene feed ratio at a first ratio value. When a change in reactor temperature is detected, the hydrogen to ethylene feed ratio is changed from the first ratio value to a second ratio value so as to maintain the melt flow index value of the polyethylene polymer product at the target value.
Abstract:
A method including a) polymerizing at least one monomer in a gas phase reactor in the presence of a supported multimodal catalyst system to form a multimodal polyethylene product having a reactor split equal to respective weight fractions of resin components in the polyethylene product; b) applying a predetermined formula for a product parameter of the multimodal polyethylene product; c) obtaining incorporation data and production rate data from the reaction based upon the predetermined formula; d) determining an actual hydrogen leading indicator; e) comparing the actual hydrogen leading indicator to a target value for a hydrogen leading indicator to determine a deviation of the actual hydrogen leading indicator from the target value; and f) adjusting an amount of a catalyst precursor being fed to the gas phase reactor to control reactor split and a product parameter.