Abstract:
The present application provides a catalyst component for alkene polymerization. The catalyst component contains: (a) a group 4 transition metal or rare earth metal, (b) a rigid non-cyclopentadienyl ligand with a tricyclic backbone composed of three ortho -fused 6-membered rings in a linear arrangement (as is the case in xanthene), with or without additional fused rings; the tricyclic backbone contains at least one donor atom within the central ring (as is the case for xanthene, oxanthrene, or acridan); furthermore, donor atoms/groups or aryl rings are attached directly (i.e. via the donor atom in the case of donor groups) to both of the bondable carbon atoms adjacent to at least one of the donor atoms within the central ring (e.g. xanthene with two donor groups, or two aryl rings, or one donor group and one aryl ring adjacent to oxygen), and (c) two or more activatable ligands, such as chloro, alkyl, aryl, allyl or hydride ligands, attached to the central metal if the complex is neutral or anionic, or one or more activatable ligand if the complex is monocationic or dicationic. The rigid non-cyclopentadienyl ligand has a charge of 0, 1– or 2– (considering all donor atoms of the ligand to have an octet of valence electrons). The catalyst component is optionally combined with an activator, typically for the purpose of generating a highly active monocationic or dicationic polymerization catalyst, and the catalyst and/or catalyst components may be in solution, precipitated from solution, or optionally carried on a support.
Abstract:
This invention relates to the use of pyridyldiamido and/or quinolinyldiamido transition metal complexes and catalyst systems with an activator and a metal hydrocarbenyl chain transfer agent, such as an aluminum vinyl-transfer agent (A VTA), to produce branched ethylene copolymers, preferably ethylene-butene, ethylene -hexene and ethylene-octene copolymers.
Abstract:
Catalyst systems and methods for making and using the same. A catalyst system can include a non-metallocene catalyst having the structure: wherein M is a group 4 element, each of R 13 -R 20 are independently a hydrogen or a methyl group, wherein at least one of R 13 -R 20 is a methyl group, Ar is an aryl group or a substituted aryl group, Ar' is an aryl group or a substituted aryl group, and each X is, independently, a hydride group, an amide, a benzyl group, a methyl group, a chloro group, a fluoro group, or a hydrocarbyl group.
Abstract:
Catalyst systems and methods for making and using the same are provided. A method for forming a polymer catalyst includes reacting a bromoketone compound with an aryl amine compound to form an amide compound. The amide compound is reacted with an ethylene diamine compound, to form a terminal primary amine compound. The terminal primary amine compound is reacted with a bromoaryl compound to form a ligand.
Abstract:
A process for preparing a catalyst comprising (A) selecting a catalyst support selected from the group consisting of gels of silica, silica alumina, alumina, aluminum phosphate, aluminaphospate, and combinations of two or more thereof; (B) mixing the catalyst support with one or more chromium containing compound, wherein the chromium containing compound is selected from the group consisting of chromium containing compounds which are oxidizable to a Cr +6 state and chromium containing compounds wherein the chromium is in a Cr +6 state; (C) mixing the catalyst support with one or more transition metal catalyst component; (D) calcining the catalyst support; and (E) optionally for the chromium containing compound which is oxidizable to a Cr +6 state, converting the chromium in the chromium containing compound to Cr +6 ; and (F) spray drying the catalyst support to form catalyst particles; wherein steps (B) - (F) may occur separately in any order or wherein any one or more of steps (B) - (F) may be combined together; and wherein the catalyst support gels are characterized by a surface area greater than 50 m 2 /gram and a pore volume greater than 0.5 cc/gram at the time of mixing the catalyst support gels with the chromium containing compound is provided.
Abstract:
Described herein are methods comprising contacting one or more olefins with a catalyst system in a polymerization reactor at conditions sufficient to produce a polyolefin, wherein the catalyst system comprises a first metallocene catalyst compound comprising a first transition metal atom, two cyclopentadienyl ligands bound to the first transition metal atom, and two leaving groups bound to the first transition metal atom, wherein at least one leaving group is selected from the group consisting of a halo-phenoxy and a halo-alkoxy; wherein the first metallocene catalyst compound has a catalyst productivity that is at least 20% greater than a comparative metallocene catalyst compound used to produce the same polyolefin, wherein the comparative metallocene catalyst compound is the same as the first metallocene catalyst compound except neither leaving group is a halo-phenoxy or a halo-alkoxy.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst compound having (1) at least one cyclopentadienyl ligand and at least one heteroatom ligand; (2) two non-bridged cyclopentadienyl ligands; or (3) two or more heteroatom ligands. The catalyst system further comprise a support comprising fluorinated silica. The support may be essentially free of alumina. The catalyst system further comprises an aluminoxane, preferably methylaluminoxane, modified methylaluminoxane, or a combination thereof.
Abstract:
A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound comprises a biphenyl phenol compound having essentially no hydrogen response.