Abstract:
Systems and methods are provided for cytometric measurement of blood cells traversing microvasculature single-file in the eye of a subject. A miniature imaging device, having cellular resolution, records image data that can be rendered into a microcirculation time sequence and analyzed to provide useful biological information.
Abstract:
Embodiments may include a method to estimate motion data based on test image data sets. The method may include receiving a training data set comprising a plurality of training data elements. Each element may include an image data set and a motion data set. The method may include training a machine learning model using the training data set, resulting in identifying one or more parameters of a function in the machine learning model based on correspondences between the image data sets and the motion data sets. The method may further include receiving a test image data set. The test image data set may include intensities of pixels in a deep-tissue image. The method may include using the trained machine learning model and the test image data set to generate output data for the test image data set. The output data may characterize motion represented in the test image data set.
Abstract:
The technology described herein is directed to a fundus camera and, more specifically, to a fundus camera having a display that projects active visual alignment stimuli onto an eye of an examinee via one or more components of an optimal assembly. The active visual alignment stimuli are dynamically adjusted to guide an examinee toward optical alignment for fundus imaging.
Abstract:
A device and a method to measure the concentrations of oxygenated and deoxygenated hemoglobin in tissue around a tumor via near-infrared (NIR) spectroscopy with a photonic mixer device (PMD) is described.