Abstract:
A method of determining torsional deformation in a drivetrain e.g. of a wind turbine. To provide a reliable and simple deformation assessment, the method comprises the step of generating a first signal representing first rotational speed of a low speed shaft, generating a second signal representing the second rotational speed of a high speed shaft, and determining torsional deformation based on changes in the ratio between the first and second signals.
Abstract:
The present invention relates to a method and a system for determining a parameter indicative of blade deflection and/or blade loading. An effective source of electro- magnetic (EM) radiation is arranged to transmit an EM radiation signal and a receiver is arranged to receive the EM radiation signal. The receiver being spaced apart from the effective source in a spanwise direction of the blade. The effective source and receiver being arranged such that deflection of the blade results in a straight-line distance between the effective source and the receiver varying and determining a parameter indicative of blade deflection and/or blade loading on the basis of the irradiance of the EM radiation signal received by the receiver.
Abstract:
A method of operating a wind turbine having a plurality of blades and at least one sub-system capable of altering a dynamic state of the wind turbine includes monitoring the vibration behavior of a first blade and a second blade and comparing the vibration behavior of the first and second blades in a plane generally defined by the rotation of the blades. The method further includes determining whether a tuning fork relationship exists between the first and second blades by comparing the vibration behavior of the blades. If a tuning fork relationship is detected, the at least one sub-system may be activated to alter the dynamic state of the wind turbine and break the vibration relationship between the blades.
Abstract:
The invention relates to a method for sensing strain in a component in a wind turbine comprising an optical sensor system. The method comprises the step of inputting a optical signal into at least one optical fibre of said sensor system comprising one or more fibre Bragg grating sensors. Further, the method comprises the step of measuring the transmitted optical signals of said one or more sensors with at least one light detector connected to the other end of said at least one optical fibre, and processing the measured signals in a control unit in order to establish a value of the strain for the component. The invention also relates to an optical strain sensing system for a component in a wind turbine and uses hereof.
Abstract:
Improvements Relating to Wind Turbines A wind turbine apparatus and a method of operating said wind turbine to maintain the load on the rotor blade below a predetermined threshold level is provided. The method comprises: measuring load at a root end of the rotor blade; measuring an acceleration at a location on the rotor blade outboard from the root end, the acceleration being caused by transient loads acting on the rotor blade; and controlling the wind turbine based upon the measured load and the measured acceleration to maintain the load on the rotor blade below a predetermined threshold level.
Abstract:
A system and method of detecting damage to a wind turbine blade (5) uses one or more fluorescent optical fibres (12,32) comprising a fluorescent material having an excitation wavelength that is selected such that the material fluoresces upon exposure to ambient radiation at the wind turbine blade, wherein the one or more optical fibres (12.32) are operatively mounted within the wind turbine blade such that upon damage to the wind turbine blade at least a part of the optical fibre is exposed at the surface of the blade causing the optical fibre to fluoresce; a light detector(14,34)for receiving a light signal from one or from both ends of the one or more optical fibres upon excitation of the fluorescent material and outputting a signal based on the light signal; and a controller coupled to the light detector (14,34) to receive the signal.
Abstract:
A sensor system for measuring an operating parameter of a wind turbine component is described. The fibre optic sensor system comprises a light source for outputting light in a predetermined range of wavelengths, and an optical fibre comprising a long Fibre Bragg Grating, extending continuously over a length of the optical fibre to provide a continuous measurement region in the optical fibre. The optical fibre is coupled to the wind turbine component such that the continuous measurement region is located at a region of the wind turbine component to be sensed, and such that the grating period at each location in the continuous measurement period is dependent upon the value of the operating parameter at that location. The system further comprises a light detector for receiving light from the optical fibre, and for providing an output signal to the controller indicating the intensity of the received light; and a controller coupled to the light detector for determining, based on the detected light, a value for the operating parameter. In a particular embodiment the system is used to monitor the generator in the wind turbine nacelle. The optical fibre with the long FBG grating can the be inserted into the coil windings or stator slot of the generator.
Abstract:
A system for identifying the likelihood of a wind turbine rotor blade striking a wind turbine tower comprises a device for sensing bending of a wind turbine rotor blade and a device for sensing bending of a wind turbine tower. In a preferred embodiment Long Period Grating (LPG) sensors are used to measure bending of the tower. Preferably a plurality of LPG sensors is provided along the length of the blade. In one embodiment at least one of the LPG sensors comprises two sensing elements arranged to sense in perpendicular directions. In another embodiment a plurality of LPG sensors are provided each on different sides of the wind turbine tower. A processor uses the sensed blade and tower bending to determine whether the distance between the blade and the tower will be below a predetermined minimum value. If the distance is determined to be below the predetermined minimum value a controller may be used to adjust a wind turbine variable to reduce loading on the blade and thereby reduce the likelihood of a tower strike.
Abstract:
A wind energy power plant optical vibration sensor is described, using two light sources 15, 16 that emit light at different respective frequencies. The light from the first light source falls on a surface 44 of the wind energy power plant at a detection site. Movements in the surface result in changes to the phase of the light reflected back from the surface which can be detected by mixing the first light with the light emitted from the second light source. The difference in frequencies between the two light sources results in a beating of the resulting interference signal, whereas movements in the sensor surface result in changes in the phase timing and frequency of the beats.
Abstract:
The present invention provides a method of operating a wind turbine. The wind turbine comprises at least one rotatable blade. The method comprises the steps of providing a load sensor configured to generate a load signal representing loading on the blade, generating a first load signal when the blade is in a first position, and generating a second load signal when the blade is in a second position. Additionally, the method comprises steps of detecting a rotational speed of the blade, calculating a weight force on the blade based on the first and the second load signal, and calculating a centrifugal force on the blade based on the first and the second load signal. Subsequently, the weight force is compared with a predetermined weight force, and the centrifugal force is compared with a predetermined centrifugal force at the detected rotational speed. Finally, a risk of ice throw is determined based on the comparisons of the weight force and the centrifugal force with the predetermined forces.