Abstract:
A method is provided of protecting a wind turbine with a doubly-fed induction generator (DFIG) against a sub-synchronous resonance (SSR) event acting on the wind turbine. A plurality of power-output values or current-output values is measured over a given period of time that corresponds to a measurement cycle. It is determined whether power-output values or current-output-values measured in the at-least-one measurement cycle are indicative of an SSR-event critical for further operation of the wind turbine. The wind turbine is shut down if the measured power-output values or current-output values are indeed indicative of an SSR- event critical for operation of the wind turbine.
Abstract:
A wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 and an indication of a plurality of environmental conditions of the wind turbine 69. It is also configured to receive an indication of an error relating to the operation of the wind turbine71. These indications are processed by the detector 65 to provide an indication of ice accretion of a wind turbine blade. In addition to or as an alternative, the wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 in a plurality of different time periods and an indication of a plurality of environmental conditions of the wind turbine 69 in the plurality of different time periods; and to process these to provide an indication of ice accretion of a wind turbine blade.
Abstract:
The present invention relates to a method of controlling a wind turbine having at least one blade and a controller, including : detect location of foreign material adhered to the blade by sensors mounted on the blade and communicatively coupled to the controller; determine the resonance mode of the blade to be excited based on the location of the foreign material by the controller; and excite the blade to the resonance mode; wherein the resonance mode is one higher than the first order resonance mode. The present invention also relates to a wind turbine using the method.
Abstract:
The invention relates to a decision support system (DSS, 1) for maintenance of renewable energy generators, such as wind turbine generator (WTG, 11). A forecasting module (FM, 21) outputs renewable power plant relevant parameters (PF) in a prediction window of time (TW), whereas an optimization module (OPT, 22) receives the relevant parameters (PF),and proposes a maintenance schedule (PROP-MAN) for the renewable power plant (WPP)in order to optimize the produced energy with respect to the demand in said predefined prediction window (TW). A renewable energy generator condition module (WT-CON, 23) outputs condition data into maintenance recommendations (REC-MAN) for one or more renewable energy generators. Finally,a renewable energy generator maintenance recommendation module (WTM, 24) is arranged to combine the proposed maintenance schedule and the maintenance recommendations into a final maintenance decision proposal (FIN-PROP-MAN).The invention changes the traditional concept of reactive and predictive maintenance technique for renewable energy generators, such as wind turbine generators.
Abstract:
A method for performing condition monitoring on a plurality of wind turbines arranged in a wind farm is disclosed. The method comprises the steps of: for each wind turbine, obtaining at least one vibration signal, each vibration signal representing vibrations of one or more monitored components of the wind turbine, e.g. moving gear parts or bearings; generating a plurality of faulty frequency indexes, each faulty frequency index corresponding to a monitored component, each faulty frequency index being generated on the basis of one or more of the obtained vibration signals, and each faulty frequency index being generated in such a manner that variations in the vibration signals introduced by variations in rotational speed of one or more rotating shafts of the wind turbine are filtered out; comparing faulty frequency indexes originating from different wind turbines of the wind farm; and based on the comparing step, evaluating the condition of each of the monitored components of the plurality of wind turbines. The method allows vibration levels of components to be easily compared on wind farm level, and faulty or failing components are easily and reliably detected. Fig.
Abstract:
Method of operating a wind power plant including the steps of: operating the wind power plant at an currentparameter schedule (P current (v)) performing a wind prediction of wind data (V w ) for a time frame (ΔT) extending to a future time T, determining a desired fatigue load level (F desιred ) of a wind power plant component at the future time T, and during operation of said wind power plant generating an updated parameter schedule (P desιred (v)) to provide the desired fatigue load level (F desired ) at time T if exposed to the predicted wind conditions (V w (t)) during said time frame (ΔT)