Abstract:
The current invention discloses a novel spectral transformation technique for characterizing digitized intensity output patterns from microarrays. This method yields improved sensitivity with reduced false positives and false negatives. Current microarray methods are overly sensitive to the detection of a visible distinction between pixels associated with probes and pixels associated with background. In one embodiment, a technique is disclosed that comprises the steps of: extracting pixels associated with an object of interest and transforming such pixels from an intensity representation to a spectral representation. In some embodiments, the extraction is based on a tessellated logarithmic spiral extraction that may yield a pixel core with a sampling of both foreground and background pixels. This core may then be computationally rescaled by lOX-10,000X to enhance spatial resolution. Once the extracted pixels are represented in the spectral regime, convolution with resolution-enhancement kernels may be used to accentuate morphological features capturing platform specific phenomenology.
Abstract:
Techniques and systems are disclosed for electronic target recognition. In particular, techniques and systems are disclosed for performing electronic surveillance and target recognition using a multiple parallax exploitation (MPEX) electronic eye platform. Among other things, a MPEX system can include an imaging unit that includes multiple image capture devices spaced from one another to form an array to provide overlapping fields-of-view and to capture multiple overlapping stereo images of a scene. The MPEX system can also include a processing unit connected to the imaging unit to receive and process data representing the captured multiple overlapping stereo images from the imaging unit to characterize one or more objects of interest in the scene.
Abstract:
Techniques, system and computer program products are disclosed for mapping sensor data form sensors. For example, a computerized system for managing sensor data from sensors include a plurality of sensor adapter modules that receive digital sensor data from sensors and convert received sensor data in a selected sensor data format; a sensor adaptor application programming interface (API) in communication with the sensor adapter modules to transmit the sensor data from the sensor adapter modules; a sensor policy engine comprising sensor management policies and in communication with the sensor adaptor API; a graphic user interface (GUI) to provide user control tools enabling a user to manage and control sensor adapter and sensor management policies in the sensor policy engine; and a sensor policy manager API in communication with the GUI, the sensor adaptor API and the sensor policy engine, the sensor policy manager API operable to communicate instructions and messages between the GUI and the sensor policy engine and the sensor adapter API.
Abstract:
A computer-implemented method for signal analysis includes receiving a first signal, receiving a second signal, coupling the first signal with a first function generated from a first quantum mechanical system to generate a first tunneling rate, coupling the second signal with a second function generated from a second quantum mechanical system to generate a second tunneling rate, coupling the first tunneling rate with a third function generated from a third quantum mechanical system, coupling the second tunneling rate with the third function, obtaining a third tunneling rate, and upon determining that the third tunneling rate is greater than a threshold, identifying that the second signal corresponds to the first signal.
Abstract:
Techniques for monitoring thermal emissivity levels of human traffic within a plurality of sections of a zone of interest are presented. The thermal emissivity levels are monitored using an infrared detector with sensitivity range of less than fifty milliKelvin, and in some variations, about fifteen to thirty milliKelvin, such as a quantum well infrared photodetector (QWIP) equipped camera. In some variations, an infrared detector operating at two or more wavelengths is utilized. Based on differential emissivity calculations, a determination is made whether the monitored emissivity level corresponds to at least one calibrated emissivity level associated with an explosive material.
Abstract:
Incoming data from, for example, an array of detectors, may be received. A dynamical system may be initialized corresponding to a modality of the incoming data so that a measurement probe based on the initialized dynamical system may be generated. Such a measurement probe may be injected into a quantum mechanical system so that it may be determined whether the injection of the measurement probe into the quantum mechanical system results in a collapse of the quantum mechanical system. Thereafter, it may be determined that a signal is present within the incoming data if the quantum mechanical system collapses. Related methods, apparatuses, systems, and computer-program products are also described.
Abstract:
Techniques are provided for performing active interferometric signal analysis in software. The techniques exploit expressor functions designed to extract spectral invariants of events of interest associated with an arrayed platform device used to detect the signal pattern to be analyzed. Various techniques for generating expressor functions are also provided. Depending upon the implementation, the techniques provide for both detection and quantitation analysis by exploiting either constructive or destructive interferometric analysis using reverberant convergence to detect resonance events. The techniques achieve software emulation of wave-particle interactions and wave-wave interactions and can operate in either the frequency domain or the phase domain. The techniques may be used for analyzing static spatial systems, static data from arrayed measurement platforms, dynamical systems, spatio-temporal systems or plasma systems.
Abstract:
Application of nonlinear resonance interferometry is introduced as a new geophysical approach to improve predictability in characterization of subsurface porosity, rock and fluid properties. In contrast to reflection methods that remove random information noise, nonlinear resonance interferometry exploits the full seismic acquisition spectrum to assess how low frequency and high-frequency noise is differentially and directly modulated by varying levels of porosity and hydrocarbon content in the lithologies of interest. In some examples, systems and techniques implement novel computational interactions between acquired seismic wavefield attributes and a nonlinear system in software to amplify distortions in seismic noise and exploits injection of synthetic noise, in software format, to detect hydrocarbon traps and lithology changes at spatial scales below seismic resolution, thereby increasing the information value of low-resolution data. The techniques are broadly applicable to de-risking conventional clastic and carbonate reservoirs and non-conventional shale gas resource prospects.
Abstract:
Systems and techniques for analyzing information gathered by multiple analytical techniques. In one aspect, a method includes receiving analytical information, gathered by multiple analytical techniques, regarding a sample, receiving expectations regarding a sample parameter, and estimating a value of the sample parameter based on the analytical information and the expectations regarding the sample parameter.
Abstract:
A novel method and software system design are presented for interchanging sensors from different vendors in a plug and play manner to drive mission critical applications within a sensor based architecture, policy based framework, event-based architecture. This technique is applicable to sensors directly attached to a computer, or sensors attached to a network, or sensors attached to a controller node which is attached to a network or directly attached to a computer.