Abstract:
Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
Abstract:
Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by deriving a fragment size parameter. In some implementations, information from fragments of different sizes are used to evaluate copy number variations. In some implementations, one or more t-statistics obtained from coverage information of the sequence of interest is used to evaluate copy number variations. In some implementations, one or more fetal fraction estimates are combined with one or more t-statistics to determine copy number variations.
Abstract:
The invention provides compositions and methods for determining whether a subject is predisposed to the disease or condition, or for diagnosing a disease or condition, or for detecting the state of a disease or condition, by detecting the methylation state of the subject's nucleic acids. In addition, the invention provides methods for determining the methylation age of a subject or tissue from a subject or for differentiation between nucleic acids originating from different subjects or tissues. The invention further provides methods for selecting nucleic acid molecules for use in the methods of the invention.
Abstract:
The present invention provides biomarkers useful for evaluating the risk that a subject will develop diabetes, monitoring such risk, identifying members of a population at risk of developing diabetes, calculating risk of a subject developing diabetes, advising subjects of risk for developing diabetes, providing diagnostic tests for identifying subjects at risk for developing diabetes or kits there for, and providing diagnostic tests for determining risk of a subject developing diabetes and kits there for. The present invention also provides compounds and methods for treating subjects.
Abstract:
The invention provides various methods for classifying prostate cancers into subtypes. The classification methods may be used to diagnose or prognose prostate cancers. In one embodiment, the subtypes are PCS1, PCS2, or PCS3. In one embodiment, the PCS1 subtype is most likely to progress to metastatic disease or prostate cancer specific mortality when compared to the PCS2 subtype or PCS3 subtype. In one embodiment, the PCS1 subtype is resistant to enzalutamide.
Abstract:
The present invention relates to methods and kits for the prediction and diagnosis of intrauterine-transmission of viral pathogens, specifically, hCMV in a mammalian subject, by calculating the ability of a subject to prevent transmission of said hCMV based on determining the expression of ISG15, IFIT3 and USP18 genes and optionally of EIF2AK2, HERC5, RSAD2 and MX1 genes in a sample of said subject.
Abstract:
Provided herein are biomarkers and methods for generating scores useful for assessing psoriatic arthritis (PsA) disease activity in subjects previously diagnosed with PsA. The invention also provides predictive model methods based on the biomarkers, as well as computer systems, software embodiments of the models for scoring and optionally classifying samples, and methods of recommending optimal therapeutic regimens.
Abstract:
The present invention provides novel methods, systems, tools, and kits for the simultaneous detection, identification and/or characterization of all viruses known or suspected to infect vertebrates. The methods, systems, tools, and kits described herein are based upon the virome capture sequencing platform ("VirCapSeq-VERT"), a novel platform developed by the inventors. The invention also provides methods and kits for designing and constructing of the virome capture sequencing platform.