Abstract:
A system and method for treatment of a contaminated liquid is described. The system includes a high voltage supply device, a general capacitor bank, one or more general limiting member, such as general switch devices or general resister devices, coupled to the high voltage supply device and to the general capacitor bank. The system further includes one or more working capacitor banks coupled to the general capacitor bank through the general limiting member, and one or more working switches arranged in series with the corresponding working capacitor bank. The system also includes one or more potential electrodes and grounded electrodes immersed in the contaminated liquid and coupled to the working capacitor banks for providing an electric discharge through the contaminated liquid.
Abstract:
A pulsed magnetic method of sealing a vessel (20) is provided. The method includes providing a vessel's body (21) having at least one open end, providing a cover (23) having a welding part (24). The welding part (24) of the cover (25) is placed over the open end of the vessel' s body (21) to overlap at least a portion of the vessel's body (21), thereby to define an air gap (26) between the portion of the vessel's body (21) and the welding part (24) of the cover (23). A welding induction coil (22) is provided around the vessel's body (21) at least at the place where the welding part (24) of the cover (25) is located. The welding induction coil (22) is energized to generate a pulsed magnetic force sufficient to cause bending the welding part (24) of the cover (21) in the air gap (26) in a radially inward direction around the portion of the vessel's body (21). The pulsed magnetic force has such a value so as to provide an effective radial velocity value of the cover's welding part (24) in the range of 150m/sec to 600m/sec at the moment of impact with the vessel's body (21), thereby to provide mutual diffusion of atoms of the vessel's body (21) and the cover (23) at their impact.
Abstract:
An apparatus for connecting an electric cable to a cable lug is described. The lug has a palm portion, and a barrel portion integrated with the palm portion for receiving wires of the cable. The apparatus comprises one or more inductor coils. Each coil comprises a pair of connector terminals separated by a slot; and an aperture having dimension sufficient for placing the barrel portion therein. The apparatus also comprises an electric discharge unit coupled to the pair of connector terminals for providing a rapid intense current discharge through the inductor coil. The aperture of the coil has a shape that conforms to the shape of a cross-section of the lug along its length.
Abstract:
An apparatus (30) and method for forming of a vehicle's driveshaft (32) is provided which makes use of a PMF process. The coil device used in the PMF apparatus is assembled around the shaft from two or more coil sections (40, 41, 43; 42, 44, 45) firmly attached to one another, and which may be disassembled from one another to allow to remove the formed driveshaft (32).
Abstract:
A bimetallic connecting element has a first part made from a first metal, and a portion of this part is adapted for being attached to a structure. A second portion of this part has a peripheral wall defining a cavity. A second part of the connector is made from a second metal, and has a third portion concentrically received with respect to the cavity and fixed with respect to the first part by means of a pulse magnetic forming (PMF) process, in which the peripheral wall is impacted onto said third portion. The second part of the connector has a fourth portion adapted for attaching thereto a component made from a third metal. The structure onto which the connector is to be fixed, typically by welding, is made from a fourth metal that is weld-compatible with said first metal. A method is also disclosed for connecting a bimetallic connector to a structure to enable a component made from a metal that is not compatible with the structure to be connected to the structure.
Abstract:
A method is provided for forming a metallurgical bond. A first metal workpiece (10) and one or more second metal workpieces (15) are brought into proximity to one another such that a first portion (12) of the first workpiece (10) is in general overlying relationship with a second portion (17) of the one or more second workpieces (15). A suitable material (99) is provided between said first portion (12) and said second portion (17), said material (99) being in the form of particles or foil. At least a first part of said first workpiece (10) comprising said first portion (12) is forced toward said a part of the one or more second workpiece (15) comprising said second portion (17) by means of any one of a suitable high pressure joining process (95) and a high speed joining process, such as to cause the said first metal workpiece (10) and said one or more second metal workpieces (15) to become joined or welded to one another to form a metallurgical bond therebetween
Abstract:
A pulsated magnetic welding method and a welding induction coil for sealing a vessel (10) are provided. The method includes providing a vessel's body (11) having an open end (12) a cover (13) including a welding part and a brim part (15). A diameter of the cover (13) at the welding part (14) is less than the diameter of the vessel's body (11) for providing an air gap (16) between the vessel's body (11) and the welding part (14). The cover (13) is placed within said open end (12) of the vessel's body (11). A welding induction coil (18) is provided around the vessel's body (11) at the place where the welding part (14) of the cover (13) is located. The welding induction coil (18) is energized to generate a pulsed magnetic force sufficient to cause bending a portion (19) of the vessel's body (11) in a radially inward direction around the cover (13) in the air gap (16). The pulsed magnetic force has such a value so to provide mutual diffusion of atoms of the vessel's body (11) and the cover (13) at their impact, thereby to weld the vessel's body (11) and the cover (13) to each other.
Abstract:
A system and method for treatment of a wastewater fluid is described. The system includes a gas supply system to provide a process gas into the wastewater fluid, a pulsed electrical-power generator to generate high electrical voltage pulses and a reactor apparatus pneumatically coupled to the gas supply system, and electrically coupled to the pulsed electrical-power generator. The reactor apparatus is configured to produce a plurality of gas microbubbles of the process gas injected into the wastewater fluid supplied into the reactor apparatus for the treatment, and to apply the high electrical voltage pulses generated by the pulsed electrical-power generator to said plurality of the microbubbles. The high electrical voltage pulses have energy sufficient to create a plasma glow discharge within the plurality of the microbubbles, and in an interface of the microbubbles with the wastewater fluid.
Abstract:
A wastewater plant and method for treatment of wastewater sludge or other wastewater fluids are described. The wastewater plant utilizes an electrical discharge system configured for receiving a wastewater fluid, and generating a transient voltage and arcing electric current pulse through the received wastewater fluid to create an electro-hydraulic shock wave within the wastewater fluid accompanied by a high electric field, intensive heat and light radiation.