Abstract:
Described herein are treatment tip apparatuses (e.g., devices, systems, etc.) including one, or more preferably a plurality, of electrodes that are protected by an electrode partition, such as an electrode housing (which may be retractable) until pressed against the tissue for deployment of the electrodes and delivery of a therapeutic treatment. In particular, these apparatuses may include a plurality of treatment electrodes (e.g., needle electrodes) and be configured for the delivery of nanosecond pulsed electric fields.
Abstract:
In various embodiments, a surgical instrument is disclosed. In one embodiment, the surgical instrument comprises a handle, a shaft assembly extending distally from the handle; and an end effector coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly having a proximal end and a distal end. The jaw assembly comprises a moveable jaw member and a fixed jaw member. The moveable jaw member is pivotably moveable between an open position and a closed position with respect to the fixed jaw member. In the closed position, the jaw assembly defines a radius of curvature and a smooth taper from the proximal end to the distal end.
Abstract:
In one embodiment, a surgical instrument comprises a handle assembly. The handle assembly comprises a closure trigger defining an energy button hole, an energy button located within the energy button hole, and a firing trigger. A shaft assembly is coupled to the handle assembly and comprises an outer tube, a closure actuator coupled to the closure trigger, and a firing actuator operatively coupled to the firing trigger. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly having a proximal end and a distal end. The jaw assembly comprises a first and a second jaw member. The first and second jaw members define a longitudinal slot. The closure actuator is coupled to the first jaw member to pivotally move the first jaw member from an open position to a closed position. A cutting member is deployable within the longitudinal slot.
Abstract:
A method is described for decreasing activity of at least one sympathetic nerve, nerve fiber or neuron innervating at least one blood vessel in the pulmonary vasculature of a patient to ameliorate pulmonary hypertension. In one embodiment, the method may involve advancing an intravascular treatment device to a target location in a target blood vessel within the pulmonary vasculature of the patient and using the treatment device to decrease activity of at least one sympathetic nerve, nerve fiber or neuron innervating the target blood vessel at or near the target location to ameliorate pulmonary hypertension.
Abstract:
Various forms of surgical instruments are disclosed. In various embodiments, an end effector having operable and closable jaws is attached to a distal end of an elongate shaft such that portions of the jaws are axially offset from the elongate shaft. Other jaw embodiments are coupled to an actuation arrangement that permits portions of the jaws to be moved out of axial alignment with the elongate shaft. Other jaw embodiments are configured to facilitate tissue dissection. Electrosurgical instruments are also disclosed. One embodiment employs a flexible electrode that is conformable to tissue.
Abstract:
A surgical endoscopic instrument with detachable end tool as a clamp, a clamp retrieving device and a method for their use is provided. The instrument comprises a clamp, removably connected by a coupling to an elongated shaft, this comprising two concentric tubes, which can rotate about each other, connected to a rotating element, that is attached to a housing, inside which a push-pull rod, driven by a handle, transmits the surgeon's commands, leading to the actuating of the end tool's jaws, as well as the clamp detachment/retrieving, from/to the elongated shaft, by operating the coupling, given by the rotation of the concentric tubes about each other, thus resulting in the detachment/attachment of clamp with its jaws blocked in its given position at the time of detachment. The clamp retrieving device consisting of a grasping element, attached through an elongated shaft, consisting of concentric sheaths, to a handle, where the push of a plunger, leads to the sliding of some sheaths in relation to the other(s), and subsequent clamp seizing, clamp jaws release, and clamp retrieval from the human body.
Abstract:
Various forms of surgical instruments are disclosed. In various embodiments, an end effector having operable and closable jaws is attached to a distal end of an elongate shaft such that portions of the jaws are axially offset from the elongate shaft. Other jaw embodiments are coupled to an actuation arrangement that permits portions of the jaws to be moved out of axial alignment with the elongate shaft. Other jaw embodiments are configured to facilitate tissue dissection. Electrosurgical instruments are also disclosed. One embodiment employs a flexible electrode that is conformable to tissue.
Abstract:
Various forms of surgical instruments are disclosed. In various embodiments, an end effector having operable and closable jaws is attached to a distal end of an elongate shaft such that portions of the jaws are axially offset from the elongate shaft. Other jaw embodiments are coupled to an actuation arrangement that permits portions of the jaws to be moved out of axial alignment with the elongate shaft. Other jaw embodiments are configured to facilitate tissue dissection. Electrosurgical instruments are also disclosed. One embodiment employs a flexible electrode that is conformable to tissue.
Abstract:
Methods and devices that displace bone or other hard tissue to create a cavity in the tissue. Where such methods and devices rely on a driving mechanism for providing moving of the device to form a profile that improves displacement of the tissue. These methods and devices also allow for creating a path or cavity in bone for insertion of bone cement or other filler to treat a fracture or other condition in the bone. The features relating to the methods and devices described herein can be applied in any region of bone or hard tissue where the tissue or bone is displaced to define a bore or cavity instead of being extracted from the body such as during a drilling or ablation procedure.
Abstract:
An electrically energized medical instrument uses one or more drive cables to both actuate mechanical components of a wrist mechanism or an effector and to electrically energize the effector. Electrical isolation can be achieved using an insulating main tube through which drive cables extend from a backend mechanism to the effector, an insulating end cover that leaves only the desired portions of the effector exposed, and one or more seals to prevent electrically conductive liquid from entering the main tube. Component count and cost may be further reduced using a pair of pulleys that are shared by four drive cables.