Abstract:
Various approaches to generating and maintaining an ultrasound focus at a target region include configuring a controller to cause transmission of treatment ultrasound pulses from a transducer having multiple transducer elements; cause the transducer to transmit focusing ultrasound pulses to the target region and generate an acoustic reflector therein; measure reflections of the focusing ultrasound pulses from the acoustic reflector; based at least in part on the measured reflections, adjust a parameter value associated with one or more transducer elements so as to maintain and/or improve the ultrasound focus at the target region.
Abstract:
Devices, systems, and methods relating to intraluminal imaging are disclosed. In an embodiment, an intraluminal imaging device is disclosed. One embodiment of the intraluminal imaging device comprises a flexible elongate member configured to be inserted into a body lumen of a patient, the flexible elongate member comprising a proximal portion and a distal portion. The intraluminal imaging device further comprises an ultrasound imaging assembly disposed at the distal portion of the flexible elongate member. The imaging assembly comprises a support member, a flexible substrate positioned around the support member, a plurality of ultrasound transducer elements integrated in the flexible substrate, and a plurality of control circuits disposed on the flexible substrate at a position proximal to the plurality of transducer elements. The plurality of control circuits has an outer profile that does not extend beyond an outer profile of the plurality of transducer elements.
Abstract:
The present invention discloses a novel technique that combines Diverging Beam with Synthetic Aperture Technique (DB-SAT). This technique aims at reducing the system's complexity (only 8 or 16 active transmit 10 elements) without compromising the image quality, and yet yield frame rates comparable to or higher than that obtained from Conventional Focused Beamforming with Linear Array (CFB-LA).
Abstract:
A system for detecting blood velocity within a blood vessel includes a transducer array including a plurality of transducers. Each of the transducers includes a carrier substrate; at least one spacer extending upwardly from substrate, a transducer element attached to spacer such that the piezoelectric transducer is spaced apart from the substrate, and setting electrodes positioned on the upper surface of the substrate under the piezoelectric transducer. A tilt control system is configured to apply a bias voltage to the setting electrodes which causes the transducer element to pivot about a pivot axis between a first tilted position and a second tilted position.
Abstract:
Systems, methods and devices are provided for performing diagnostic or therapeutic transcranial procedures using a patient-specific transcranial headset. The patient-specific headset may include a patient-specific frame that is fabricated, according to volumetric image data, to conform to an anatomical curvature of a portion of a patient's head. The patient-specific frame is configured to support a plurality of transducers in pre-selected positions and orientations, which may be spatially registered to the volumetric image data. This spatial registration may be employed to control at least a portion of the transducers to focus energy at a pre-selected tissue region.
Abstract:
Disclosed is a medical device that includes a phased array ultrasound transducer. The transducer includes a number of transducer elements that are electrically coupled to corresponding electrical conductors. In one embodiment, the conductors are included in a flex circuit and engage corresponding transducer elements though a conductive surface formed on outwardly extending ribs of a frame that holds the ultrasound array. In one embodiment, the phased array is forward facing in the medical device and has an element pitch of 0.75 lambda or less and more preferably 0.6 lambda or less. In one embodiment, the transducer is rotatable over an angle of +/- 90 degrees to provide a 360 degree view of tissue surrounding the distal end of the device.
Abstract:
The ultrasound diagnostic apparatus includes an ultrasound transceiver that, by using a probe, transmits an ultrasound signal to an object, and receives an echo signal corresponding to the ultrasound signal from the object and an operation mode controller that sets an operation mode of the ultrasound transceiver to one of first and second operation modes, based on operation state information of the probe.
Abstract:
An ultrasound system drives the elements of an ultrasound probe with asymmetric transmit signals which reinforce poling of the probe transducer. The use of asymmetric transmit signals enables a transducer element to withstand a significantly higher RF transmit voltage without degradation, which in turn enables higher acoustic output and improved reliability. This is particularly beneficial with single crystal transducer material when used to generate high energy pressure waves of long duration such as shear wave push pulses.
Abstract:
An ultrasound system is described which produces blended fundamental and harmonic frequency images. Successively transmitted, differently modulated pulses are transmitted by an ultrasound probe and both fundamental and harmonic frequencies are received in response. The echo signals received from the two pulses are processed by pulse inversion, producing cleanly separated bands of fundamental and harmonic signals in which undesired components have been cancelled. Since the two bands have been separated by signal cancellation rather than filtering, the two bands are allowed to overlap, providing broadband signals in each band. The bands are filtered by bandpass filtering to define the fundamental and harmonic signals to be imaged. The signals are detected, and the detected signals are combined after weighting to produce a blended fundamental/harmonic image.
Abstract:
A hand-held system for ultrasound monitoring of internal organs of humans and animals and providing therapy combined with ultrasound is presented. The system comprises a base that functions as a docking station for the smart device. The base comprises ultrasound transducer elements, which are essentially integral with additional electronics, located on its bottom side and a socket into which the smart device can be inserted on its top side. The socket is provided with connecting elements suitable to mechanically and electrically connect the smart device to the base and to allow the base and the smart device to be moved as a single unit.