Abstract:
An envelope is comprised of two sheets of material that are placed one on top of each other with their interior sides facing each other with their edges sealed to each other with an adhesive to form an airtight enclosure. The envelope has at least one medical patch inside it that is attached to the interior side of at least one of the sheets and a layer of medical grade pressure sensitive adhesive surrounding the at least one medical patch. The pressure sensitive adhesive is applied to a part of the surface of the interior side of the sheet in order to attach the sheet of material and the at least one medical patch to the body of a patient. The medical patch can be an electrode for measuring a patient's vital signs or delivering an electric shock or a transdermal patch for delivering a drug to a patient.
Abstract:
Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. A preferred sensing configuration may be selected at a given point in time, for example under clinical conditions. Signal quality for the preferred sensing configuration is then monitored, and if the signal quality degrades under selected conditions, re-analysis may be performed to select a different sensing vector configuration for at least temporary use. If signal quality increases for the preferred sensing configuration, temporary use of the different sensing vector configuration may cease and reversion to the preferred sensing configuration takes place if certain conditions are met. The conditions for reversion may depend in part of a history of sensing signal quality for the preferred sensing configuration.
Abstract:
Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. Signals from multiple vectors may be combined using weighting factors and/or by conversion to different coordinate systems than the original inputs, which may or may not be normalized to patient anatomy. Signals from multiple sensing vectors may be combined prior to or after several analytical steps or processes including before or after filtering, and before or after cardiac cycle detection. Cardiac cycle detection information may be combined across multiple sensing vectors before or after analysis of individual vectors for noise or overdetection. Cardiac cycle detection information may also be combined across multiple sensing vectors to identify noise and/or overdetection.
Abstract:
An ambulatory medical device comprising: a monitoring component comprising at least one sensing electrode for detecting a cardiac condition of a patient; at least one processor configured for: adjusting one or more detection parameters for detecting the cardiac condition of the patient based at least in part on at least one of 1) one or more environmental conditions and 2) input received from the monitoring component; and providing at least one of an alarm and a treatment in response to detecting the cardiac condition of the patient based on the adjusted one or more detection parameters.
Abstract:
The present invention relates to a device for providing neuromuscular stimulation. The device comprises a positive electrode, a plurality of negative electrodes, a non-conductive substrate and a control unit for activating the electrodes. The control unit of the device activates the negative electrodes in a predetermined sequence, so as to deliver electrical stimulus to a user, wherein the predetermined sequence is repeated with an increasing level of stimulus until a predetermined outcome is achieved. Additionally each negative electrode of the devices comprises at least one conductive track mounted on the non-conductive substrate wherein at least one pair of negative electrodes overlap such that the conductive track or tracks of a first negative electrode of the pair overlap with the electrode footprint, but not the conductive tracks, of a second negative electrode of the pair.
Abstract:
A medical monitoring and treatment device that includes a therapy delivery interface, a plurality of therapy electrodes coupled to the therapy delivery interface, a plurality of electrocardiogram sensing electrodes to sense electrocardiogram signals of a patient, a sensor interface to receive the electrocardiogram signals and digitize the electrocardiogram signals, and at least one processor coupled to the sensor interface and the therapy delivery interface to analyze the digitized electrocardiogram signals, to detect a cardiac arrhythmia based on the digitized electrocardiogram signals, and to control the therapy delivery interface to apply electrical therapy to the patient based upon the detected cardiac arrhythmia. The at least one processor is further configured to analyze a frequency domain transform of the digitized electrocardiogram signals, to determine a metric indicative of a metabolic state of a heart of the patient, and to accelerate or delay application of the electrical therapy based upon the metric.
Abstract:
A system and method for medical premonitory event estimation includes one or more processors to perform operations comprising: acquiring a first set of physiological information of a subject, and a second set of physiological information of the subject received during a second period of time; calculating first and second risk scores associated with estimating a risk of a potential cardiac arrhythmia event for the subject based on applying the first and second sets of physiological information to one or more machine learning classifier models, providing at least the first and second risk scores associated with the potential cardiac arrhythmia event as a time changing series of risk scores, and classifying the first and second risk scores associated with estimating the risk of the potential cardiac arrhythmia event for the subject based on the one or more thresholds.
Abstract:
A method for measuring a myocardial physiologic parameter according to an embodiment includes placing an at least partially convex portion of a spectral sensor against an intercostal space of a human over a heart of the human and measuring the physiologic parameter of a myocardium of the heart with the spectral sensor over time during an emergency medical event. The spectral sensor may be configured to determine and visually display a suggested position adjustment for directing the spectral radiation more directly toward the tissue of interest (e.g. the myocardium), and/or for placing the operative elements of the spectral sensor closer to the tissue of interest (e.g. the myocardium).
Abstract:
A method and apparatus for treating a cardiac condition in a human or animal patient comprises contacting an area of skin spanning the chest area of the patient with at least two patches or electrode paddles that apply low voltages and currents in a rotational manner to pre- stimulate that area, followed by applying a high voltage shock in rapid succession through the patient's heart through at least two electrode pad patches or paddles, wherein an amplifier-based external defibrillation cardioversion system is used. Also, an external pacing system is employed using ascending ramp or any arbitrary ascending or level waveform for transcutaneous pacing which employ a constant current delivery mode. Treatable conditions include atrial fibrillation (AF), atrial tachycardia (AT), ventricular fibrillation (VF), and ventricular tachycardia (VT).
Abstract:
Die Erfindung bezieht sich auf eine Vorrichtung zur Unterstützung des Rettungspersonals bei der Durchführung einer Herz-Lungen-Wiederbelegung mit einer Überwachungseinrichtung für die Herzdruckmassage, die mindestens eine Sensoreinheit (1) für die Druckbetätigung und eine Verarbeitungsvorrichtung (2) für ihr zugeführte Sensorsignale aufweist. Vorteile für den Aufbau und die Funktion ergeben sich dadurch, dass die Sensoreinheit (1) mindestens ein Dehnungssensorelement (10) aus einem seine elektrischen Eigenschaften bei Dehnung ändernden Material um- fasst und mit einer Haltevorrichtung versehen ist, mittels deren das mindestens eine Dehnungssensorelement (10) bezüglich der Brust der zu rettenden Person in der Weise fixierbar ist, dass das mindestens eine Dehnungssensorelement (10) synchron mit der Druckbetätigung verformt wird und dadurch das Sensorsignal gebildet wird.