Abstract:
Aluminiumverbundwerkstoff zur Verwendung in thermischen flussmittelfreien Fügeverfahren, umfassend mindestens eine Kernschicht bestehend aus einer Aluminiumkernlegierung und mindestens einer einseitig oder beidseitig auf der Kernschicht vorgesehenen, äußeren Lotschicht bestehend aus einer Aluminiumlotlegierung. Die Aufgabe, einen Aluminiumverbundwerkstoff zur Verwendung in einem thermischen flussmittelfreien Fügeverfahren vorzuschlagen, mit welchem die Löteigenschaften sowohl im Vakuum als auch unter Schutzgas ohne die Verwendung von Flussmitteln unter Vermeidung der aus dem Stand der Technik bekannten Nachteile weiter optimiert werden können, wird dadurch gelöst, dass die Aluminiumlotlegierung folgende Zusammensetzung in Gew.-% aufweist: 6,5 % ≤ Si ≤ 13 %, Fe ≤ 1 %, 90 ppm ≤ Mg ≤ 300 ppm, Bi
Abstract:
L'invention se rapporte à un procédé de fabrication d'une pièce métallique (1) du type sandwich présentant une forme non-développable, cette pièce comprenant une âme en nid-d'abeilles métallique (2) ainsi que deux peaux métalliques (4) agencées de part et d'autre de l'âme, le procédé comprenant : - une étape de déformation plastique de tôles (4') pour l'obtention des deux peaux métalliques (4); puis, - une étape de solidarisation des deux peaux (4) à l'âme (2).
Abstract:
A laminate structure and method of forming is provided. The laminate structure includes a first metal sheet having a first thickness, a second metal sheet having a second thickness, and an adhesive core having an adhesive thickness. The adhesive core is disposed between and bonded to the first and second metal sheets. The first and second metal sheets are made of an aluminum based material and the adhesive core is made of an adhesive material also described as a viscoelastic adhesive material. The laminate structure is configured such that a ratio of the sum of the first and second thickness to the adhesive thickness is greater than either to one (8:1). The laminate structure including the viscoelastic adhesive core is characterized by a composite loss factor at 1,000 Hertz which is continuously greater than 0.1 within a temperature range of 25 degrees Celsius to 50 degrees Celsius.
Abstract:
The invention relates to a multi-layered brazing sheet material having an aluminium core alloy layer provided with a first brazing clad layer material on one face of said aluminium core layer and an inter-layer inter-positioned between the aluminium core alloy layer and the first brazing clad layer material, wherein the core layer is made from an aluminium alloy comprising, up to 0.6% Si, up to 0.45% Fe, 0.6% to 1.25% Cu, 0.6% to 1.4% Mn, 0.08% to 0.4% Mg, up to 0.2% Cr, up to 0.25% Zr, up to 0.25% Ti, up to 0.3% Zn, balance aluminium, wherein the first brazing clad layer is made from an 4xxx-series aluminium alloy having 6% to 14% Si and up to 2% Mg, balance aluminium, and wherein the inter-layer is made from an 3xxx- series aluminium alloy comprising, up to 0.4% Si, up to 0.5% Fe, up to 0.8% Cu, 0.4% to 1.1 % Mn, up to 0.04% Mg, up to 0.2% Cr, up to 0.25% Zr, up to 0.25% Ti, up to 0.3% Zn, balance aluminium.
Abstract:
A heat exchanger (10) has a clad thin sheet material (2), a clad thick sheet material (1) that is disposed so as to define a passage (4) between the clad thick sheet material (1) and the clad thin sheet material (2), and that has a sheet thickness greater than that of the clad thin sheet material (2), and an inner fin (3) held between the clad materials (1, 2). The clad thick sheet material (1) and the clad thin sheet material (2) have Zn-containing brazing filler metal layers (12, 22) on their passage (4) sides, respectively, and the post-brazing surface Zn amounts A1 and A2 are set so as to satisfy specific conditions. Further, certain conditions concerning the compositions of each of the layers that constituting the clad materials (1, 2), and the inner fin (3) are set.