Abstract:
The invention relates to a vehicle comprising a floor (2), a front and a rear wheel arrangement (5, 6). The rear wheel arrangement (6) comprises, respectively, two wheels (7.1, 7.2; 8.1, 8.2) on both sides of the vehicle and the two wheels (7.1, 7.2 and/or 8.1, 8.2) are connected together. The wheel connection (7.1, 7.2 and/or 8.1, 8.2) comprises at least two carriers (9, 10) which are connected together by means of a joint (11). At least one carrier (9, 10) rests against the bottom (2).
Abstract:
A vehicle stabilization system including a frame; a wheel; a control arm connected to the frame and the wheel; a fluid spring connected to the frame and the control arm; a stabilizer connected to the frame and operable between a retracted and extended position; a reservoir; and a fluid manifold connected to the fluid spring and the chamber, fluidly coupling the spring interior and stabilizer chamber to the reservoir interior. A vehicle stabilization method including maintaining an orientation of the vehicle frame, coupling the frame to a support surface using a stabilizer by introducing a fluid to a chamber of the stabilizer, and retracting a wheel by reducing a quantity of fluid within a fluid spring coupling the wheel to the frame.
Abstract:
Embodiments of a suspension for a vehicle is provided. The suspension includes, for example, a frame and a locking assembly. The locking assembly inhibits tipping of a frame of the vehicle when tipping of the frame is detected.
Abstract:
A system for automatically and simultaneously controlling one or more vehicle functions by detecting the direction of movement of and the distance traveled by the vehicle. The control system includes an electronic sensor (15) mounted on a selected one of the vehicle axles (11) adjacent to and facing an anti-lock braking system tone ring of a selected one of the wheel hubs mounted on the axle. The sensor is electrically connected to an electronic control unit (30), which in turn is electrically connected to a vehicle function actuation device (40) such as a lift axle solenoid or back-up alarm actuation device. The sensor transmits direction and distance information to the electronic control unit based on the movements of a plurality of teeth formed on the tone ring. The control system is a stand-alone system that is free of interfacing with other vehicle systems, such as the anti-lock braking system.
Abstract:
A swing-frame auxiliary axle system for a work vehicle having a main frame including spaced chassis rails is disclosed which includes a pivot frame having a pair of spaced pivot arms connected by a common torque tube and each of which is pivotally mounted to a vehicle chassis rail, said spaced pivot arms including at least one tag axle and wheel and a cross member at the other end. An operating system is provided for moving the auxiliary axle assembly between a stowed and a support position. An independent modular arm pivot joint and attachment system pivotally mount each of the spaced pivot arms to a corresponding one chassis rail. The operating system also has a tage lever fixed to the torque tube and a hydraulic operating cylinder having a rod end journaled about an independent modular tag lever pivot joint and attachment system, connected between the rod end and the tag lever removably attaching the cylinder rod to operate the tag lever.
Abstract:
A tag axle suspension system can include a tire and at least one hanger bracket pivotable relative to a vehicle frame to deployed and lifted configurations. In the lifted configuration, the tire can be a lowest component of the suspension system, and can be a first component to engage a road surface. A tag axle suspension system can include an air spring and a travel limit device that limits compression of the air spring in a lifted configuration of a hanger bracket. A tag axle suspension system can include an axle, a suspension arm pivotably connected between a hanger bracket and the axle, and a travel limit device that limits displacement of the suspension arm in a lifted configuration of the hanger bracket. The travel limit device can limit displacement of the axle toward an air spring support in the lifted configuration of the hanger bracket.
Abstract:
A wheelchair includes a frame, and a front pivot arm pivotally mounted to the frame at a front pivot point, the front pivot arm having a caster for supporting the frame. A rear pivot arm is pivotally mounted to the frame at a rear pivot point, the rear pivot arm having a caster for supporting the frame. A ground engaging mid- wheel drive wheel is connected to the frame. A linkage connects the front and rear pivot arms to each other in a manner such that an upward or downward rotation of one of the pivot arms about its pivot point causes rotation of the other pivot arm about its pivot point in an opposite rotational direction.
Abstract:
A wheelchair has a suspension system that includes a front caster housing mounted forward of a wheelchair frame by means of a front linkage. The front caster housing supports a front caster. A drive wheel pivot arm, on which a mid-wheel-drive drive wheel is mounted, is itself mounted for pivoting with respect to the frame. A flexible tension member is connected to both the drive wheel pivot arm and the front linkage. The mounting of the flexible tension member is configured so that rotation of the drive wheel pivot arm in a downward direction applies tension to the flexible tension member, causing the upper link to rotate upward, and thereby lifting the caster housing and the front caster.
Abstract:
A wheelchair has a damping system to reduce the forward pitch of the wheelchair upon sudden deceleration or upon descent of a sloped surface. The damping system includes a clamp that selectively grips a shaft.
Abstract:
A swing-frame auxiliary axle system (200) for a work vehicle (100) and method of assembling is disclosed that includes a pivot frame having a pair of spaced pivot arms (120) having a pivot end (134) and a free end (132) and being connected to carry a common transverse torque tube (130) close to the free end (132) thereof, each arm (120) being pivotally mounted to a vehicle chassis rail (114) near the pivot end (134), the torque tube (130) including a pair of tag axles attached thereto and wheels (116). The system is provided with a pivot frame alignment system for intrinsically aligning the pivot spaced arms (120) and the torque tube (130) in proper transverse relation for ease in assembling or re-assembling and stability in operating.