Abstract:
A method for making a highly birefringent optical fiber includes providing a preform with a substantially circular cross-section. The preform (110) includes a core region (120, 140) having a substantially circular cross-section and a substantially elliptical cladding region (134) adjacent the core region. The outer surface of the preform (130) is modified to create a shaped preform (150) with a non-circular cross-section. The shaped preform (150) is then drawn at a temperature and draw rate sufficient to provide an optical fiber (160) with the non-circular cross-section of the shaped preform. Also disclosed is a highly birefringent optical fiber (160) having a substantially circular core region (170), a surrounding substantially elliptical cladding region (164) and a non-circular outer geometry, such as planar surfaces (163, 165). A method of connection such optical fibers having outer planar surfaces using a specially adapted jig (280) is also disclosed.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung einer polarisationserhaltenden Lichtleitfaser, bestehend aus einem Kernbereich und in dem Faserkörper eingebetteten spannungserzeugenden Elementen mit folgenden Verfahrensschritten: Fertigen einer Kernpreform für den Kernbereich unter Anwendung einer Innenabscheidetechnik auf einem Substratrohr mit einem anschließenden Kollabieren des innenbeschichteten Substratrohres, Erzeugen von Aussparungen auf der Kernpreform durch ein Entfernen des Materials auf der Außenfläche der Kernpreform parallel zur Längsachse der Kernpreform an diametral zueinander gelegenen Positionen, Auffüllen der Aussparungen mit spannungserzeugenden Stäbchen in einer dichtestmöglichen Stäbchenpackung in einer frei wählbaren ersten Ausfüllgeometrie, Gegebenenfalls ergänzendes Auffüllen der Aussparungen mit nicht spannungserzeugenden Stäbchen in einer zweiten Ausfüllgeometrie, Ummanteln der aufgefüllten Kernpreform mit einem Jacketingrohr, Vorbereiten der ummantelten Kernpreform für einen Faserziehprozess, Ziehen der ummantelten Anordnung zur Lichtleitfaser. Eine Preform zur Herstellung einer polarisationserhaltenden Lichtleitfaser enthält eine Kernpreform mit einem Kernbereich und einem Mantelbereich sowie ein die Kernpreform umgebendes Jacketingrohr, sowie im Mantelbereich enthaltene spannungserzeugende Elemente, wobei die spannungserzeugenden Elemente in Form von Aussparungen des Mantelbereichs ausgebildet sind, wobei die Aussparungen mit dotierten Stäbchen und/oder undotierten Stäbchen aufgefüllt sind, wobei die Füllung der Stäbchen eine erste und/oder eine zweite Anordnungsgeometrie bildet.
Abstract:
A photonic crystal fibre comprising a bulk material having an arrangement of longitudinal holes (130, 140) and a guiding core (135), wherein the fibre has at-most-two-fold rotational symmetry about a longitudinal axis and as a result of that lack of symmetry, the fibre is birefringent.
Abstract:
A preform element, it production and fiber production methods from preform assemblies are disclosed. The preform element has a length and a center axis along its length, a first and second end defined by its length and an outer preform element surface. The preform element comprises a plurality of longitudinal structures disposed to form longitudinal hole(s) in a background material. At least one slot extending from its outer preform element surface and intersecting at least one of the longitudinal holes, wherein the at least one slot does not fully intersect the preform element. The preform element may be a preform center element or a preform ring element and may be assembled to a form part of a preform assembly for an optical fiber.
Abstract:
A glass preform (10) is drawn into a fiber. Holes (13), running the length of the preform (10), collapse during the drawing, this causes the core (11) to have an elliptical cross section.
Abstract:
An improved polarization preserving birefringent fiber optic member is provided having cross-sectional circular cladding and core members of soft glasses. A metallic coating of an approximately circular configuration, that is offset from the axis of the core and cladding members, is provided with sufficient thickness to provide an anisotropic variation in compressional strain on the core member to create the anisotropy of the refracted index of the core member for preserving polarization characteristics. The optical fiber can be formed by heating a mechanical composite of a core rod and cladding tube, drawing the core and cladding to form a fused fiber and transporting the drawn fiber through a coating bath to provide the variation in thickness.
Abstract:
Method for manufacturing optical fibers, comprising: cutting mirror-symmetrical grooves (2, 3) on a preform rod (1 ) which is inserted into a tube (4) of optical material; fusing the preform rod and the tube in a nonworking area; pulling the fused preform rod and tube into a preform which has longitudinal channels defined by the grooves (2, 3) and the tube (4); cutting the preform (5) into segments; etching the longitudinal channels; sealing segment end(s); assembling segments with a capillary tube and tubular process holder; joining the segment and capillary tube on a side opposite to the tubular process holder; drawing the preform segment into an optical fiber, and applying a protective strengthening coating on the drawn optical fiber. As a result, an optical fiber is produced, which has birefringent properties influenced by dimensions of the mirror- symmetrical grooves and the etching step.
Abstract:
A photonic crystal fibre including a plurality of longitudinal holes (220), in which at least some of the holes have a different cross-sectional area in a first region (200) of the fibre, that region having been heat-treated after fabrication of the fibre, from their cross-sectional area in a second region of the fibre (190), wherein the optical properties of the fibre in the heat-treated region (200) are altered by virture of the change in cross-sectional area of holes (230) in that region (200).
Abstract:
An improved polarization preserving birefringent fiber optic member is provided having cross-sectional circular cladding and core members of soft glasses. A metallic coating of an approximately circular configuration, that is offset from the axis of the core and cladding members, is provided with sufficient thickness to provide an anisotropic variation in compressional strain on the core member to create the anisotropy of the refracted index of the core member for preserving polarization characteristics. The optical fiber can be formed by heating a mechanical composite of a core rod and cladding tube, drawing the core and cladding to form a fused fiber and transporting the drawn fiber through a coating bath to provide the variation in thickness.
Abstract:
A hollow core fiber has a cladding comprising a matrix of cells, wherein each cell comprises a hole and a wall surrounding the hole. The fiber further has a hollow core region comprising a core gap in the matrix of cells, wherein the core gap spans a plurality of cells and has a boundary defined by the interface of the core gap. The matrix of cells comprises a plurality of lattice cells, and a plurality of defect cells characterized by at least one difference in at least one property from that of the lattice cells. The cells at the core region boundary include lattice cells and defect cells that are arranged in a pattern that define two orthogonal axes of reflection symmetry, so as to produce birefringence in a light propagating through the hollow core fiber.