Abstract:
The present invention provides a process for preparing 1,1,1,2,2-pentafluoropropane (245cb), the process comprising gas phase catalytic dehydrochlorination of a composition comprising 1,1,1-trifluoro-2,3-dichloropropane (243db) to produce an intermediate composition comprising 3,3,3-trifluoro-2-chloro-prop-1-ene (CF 3 CCI=CH 2 , 1233xf), hydrogen chloride (HCI) and, optionally, air; and gas phase catalytic fluorination with hydrogen fluoride (HF) of the intermediate composition to produce a reactor product composition comprising 245cb, HF, HCI and air; wherein the process is carried out with a co-feed of air.
Abstract:
The present invention provides a process for producing a fluoroolefin by reacting, in a gas phase, a fluorinating agent and a chlorine-containing alkene or a chlorine-containing alkane in the presence of at least one catalyst selected from the group consisting of chromium oxide, at least part of which is crystallized, and fluorinated chromium oxide obtained by fluorinating the chromium oxide. According to the present process, a target fluoroolefin can be obtained at a high conversion rate of the starting material and with high selectivity.
Abstract:
The current invention relates to a process for making a tetrafluoropropene using a tetrafluorochloropropane and/or a pentafluoropropane as starting or intermediate reagents. More specifically, though not exclusively, the present invention relates to a novel method for preparing a tetrafluoropropene by dehydrohalogenating a starting or intermediate tetrafluorochloropropane and/or pentafluoropropane material in the presence of a caustic solution at a temperature range greater than 40°C and less than or equal to 80°C.
Abstract:
The current invention relates to a process for making a tetrafluoropropene using a tetrafluorochloropropane and/or a pentafluoropropane as starting or intermediate reagents. More specifically, though not exclusively, the present invention relates to a novel method for preparing a tetrafluoropropene by dehydrohalogenating a starting or intermediate tetrafluorochloropropane and/or pentafluoropropane material in the presence of a caustic solution at a temperature range greater than 40°C and less than or equal to 80°C.
Abstract:
A one reactor, gas phase catalyzed process for the fluorination of 1,1,2,3-tetrachloropropene (1230xa) to produce 1,1,1,2-tetrafluoropropene (1234yf) is disclosed. The process of the present invention is a catalytic, gas phase fluorination using a high pressure activated catalyst which is supported or unsupported. Fluorination products of the formula CF3R, where R is selected from -CCl=CH2, -CF=CH2, -CF2-CH3, -CFCl-CH3 and mixtures thereof are produced. Co-produced materials are separated from the desired product and recycled to the same reactor.
Abstract:
Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF 3 CF=CH 2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCI 2 =CCICH 2 CI (which may be purchased or synthesized from 1,2,3- trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CFaCCl=CH2, preferably in a 80-96% selectivity. The CF 3 CCl=CH 2 is preferably converted to CF 3 CFClCH 3 (244-isomer) using a SbCl 5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture Of Cr2O3 and FeCl 3 /C is preferably used as the catalyst to achieve high selectivity to CF 3 CCl=CH 2 (96%). In the second step, SbCl 5 /C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF 3 CFClCH 3 . The intermediates are preferably isolated and purified by distillation and used in the next step without further purification, preferably to a purity level of greater than about 95%.
Abstract:
A process for the production of dichlorotrifluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride in the vapour phase at elevated temperature in at least one reactor in the presence of a fluorination catalyst to produce a composition comprising dichlorotrifluoroethane, hydrogen chloride, unreacted perchloroethylene and unreacted hydrogen fluoride. The composition that is produced is subjected to a separation step to recover a first fraction comprising dichlorotrifluoroethane and a second fraction comprising perchloroethylene and hydrogen fluoride. The second fraction is further separated into a hydrogen fluoride-rich fraction and a perchloroemylene-containing, organic-rich fraction which are then recycled. The dichlorotrifluoroethane that is recovered may be used to prepare pentafluoroethane.
Abstract:
A process for the production of dichlorotrifluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride (HF) at elevated temperature in the vapour phase in at least one reactor in the presence of a fluorination catalyst. The process is operated so that the increase in temperature across the or each reactor from the inlet side to the outlet side is controlled. The dichlorotrifluoroethane may be purified and then used as it is or used to prepare pentafluoroethane.