Abstract:
La présente invention concerne un procédé de réduction de composés organiques insaturés choisis dans le groupe formé par les aldéhydes, les cétones, les imines, les acides carboxyliques, les amides, et les esters avec un formiate de bore de formule (I) en présence d'un solvant et éventuellement d'une base. L'invention concerne également l'utilisation du procédé de réduction de composés organiques insaturés choisis dans le groupe formé par les aldéhydes, les cétones, les imines, les acides carboxyliques, les amides, et les esters selon l'invention, dans la préparation du méthanol, d'aminés méthylées, de formaldéhyde et d'alcools; pour la préparation de réactifs pour les réactions de couplage Suzuki; et dans la fabrication de vitamines, de produits pharmaceutiques, de colles, de fibres acryliques, de cuirs synthétiques, de pesticides. Formula (I).
Abstract:
A combined anaerobic digester system and gas-to-liquid system is disclosed. The anaerobic digester requires heat, and produces methane. The gas-to-liquid system produces heat, and converts methane to higher-value products, including methanol and formaldehyde. As such, the combination of the two systems results in significant savings in terms of capital and operating expenses. A process for producing bio-formaldehyde and bio-formalin from biogas is also disclosed.
Abstract:
Disclosed herein are reaction compositions comprising an oxidation catalyst, a solvent, and a substrate that is dissolved in the solvent. The oxidation catalyst comprises a metal ion complexed with an α-keto acid and a tridentate N,N,O-ligand. Also disclosed herein are methods for oxidizing a C-H bond of a molecule, the methods comprising contacting the molecule with a metal complex comprising a metal ion complexed with a tridentate N,N,O-ligand in the presence of an α-keto acid and a solvent. In some embodiments, the oxidation catalyst or metal complex is linked to a solid support.
Abstract:
An integrated process for the production of one or more acetylene derivatives is provided. The integrated process includes a) partially oxidizing a hydrocarbon feedstock to produce a partial oxidation mixture comprising H 2 , CO, and acetylene, b) providing the H 2 and CO of the partial oxidation mixture to a collocated methanol production process to produce a methanol-containing effluent; c) providing the methanol-containing effluent to a collocated carbonylation process to produce an acetic acid-containing effluent; and d) providing the acetylene of the partial oxidation mixture and the acetic acid-containing effluent to one or more of the collocated acetylene-derivative processes following: i) a vinyl acetate monomer production process; ii) an oxidation unit for the production of formaldehyde from the methanol-containing effluent; iii) a vinyl chloride monomer production process, and/or iv) a 1,4-butanediol production process.
Abstract:
A process for producing a cyclic acetal is disclosed. According to the process, a formaldehyde source is combined with an aprotic compound and contacted with a heterogeneous catalyst which causes the formaldehyde source to convert into a cyclic acetal such as trioxane. The catalyst, for instance, may comprise a solid catalyst such as an ion exchange resin. In one embodiment, the process is used for converting anhydrous formaldehyde gas to trioxane. The anhydrous formaldehyde gas may be produced form an aqueous formaldehyde solution by an extractive distillation.
Abstract:
The invention relates to a method for producing acrylic acid from methanol and acetic acid, whereby the methanol is partially oxidised in a reaction zone A, in a heterogeneously catalysed gas phase reaction to form formaldehyde; a reaction gas starting mixture B containing acetic acid and formaldehyde is produced with the thus obtained product gas mixture A and an acetic acid source, said mixture comprising more acetic acid than formaldehyde; and the formaldehyde contained in the reaction gas starting mixture B undergoes aldol condensation in a reaction zone, with the acetic acid contained in the reaction gas starting mixture B, in a heterogeneously catalysed manner to form acrylic acid. Non-reacted acetic acid still contained in the product gas starting mixture (B) is separated from the product gas mixture B obtained, in addition to the target product acrylic acid, and the separated acetic acid is guided back into the process for the production of the reaction gas starting mixture B.
Abstract:
The present invention refers to a catalyst for aldehyde production, in particular formaldehyde or acetaldehyde production, through selective oxidation of alkanol, especially methanol or ethanol, with oxygen, said catalyst having a spinel structure. The catalyst typically comprises a Fe a q +V b+ Mo c+ y +Δ z O 4 spinel structure wherein Δ is an optional cation vacancy and wherein wherein z = 3-q-x-y and q x a+x x b+y x c = 8 in concentrations corresponding to 0.6
Abstract:
The invention provides a method of manufacturing a stable aldehyde-surfactant complex solution wherein at least one aldehyde is added to a surfactant in a first aliquot of water, at a temperature of between 40°C to 5O°C, the aldehyde is allowed to interact with the surfactant or detergent, in a complexing reaction, for at least 15 minutes whilst maintaining the temperature between 40°C to 5O°C to produce an aldehyde-surfactant complex solution, and a second aliquot of water is added after at least 15 minutes to cool the aldehyde-surfactant complex solution to below 4O°C to stop the complexing reaction.
Abstract:
The invention provides a method of manufacturing a stable aldehyde-surfactant complex solution wherein at least one aldehyde is added to a surfactant in a first aliquot of water, at a temperature of between 40°C to 5O°C, the aldehyde is allowed to interact with the surfactant or detergent, in a complexing reaction, for at least 15 minutes whilst maintaining the temperature between 40°C to 5O°C to produce an aldehyde-surfactant complex solution, and a second aliquot of water is added after at least 15 minutes to cool the aldehyde-surfactant complex solution to below 4O°C to stop the complexing reaction.
Abstract:
Die Erfindung betrifft einen Beschichtungskatalysator, insbesondere zur Oxidation von Methanol zu Formaldehyd, der auf einem inerten, vorzugsweise im wesentlichen unporösen Trägerkörper mindestens eine Beschichtung aufweist, die vor dem Entfernen der organischen Anteile der Komponenten b) bzw. c) enthält: (a) Oxide oder in die entsprechenden Oxide überführbare Vorläuferverbindungen von Molybdän und Eisen, wobei das molare Verhältnis von Mo: Fe zwischen 1:1 und 5:1 liegt, sowie gegebenenfalls weitere metallische bzw. metalloxidische Komponenten oder in die entsprechenden Oxide überführbare Vorläuferverbindungen, (b) mindestens einen organischen Binder, vorzugsweise eine wässrige Dispersion von Copolymeren, insbesondere ausgewählt aus Vinylacetat/Vinyllaurat, Vinylacetat/Ethylen, Vinyacetat/Acrylat, Vinylacetat/Maleat, Styrol/Acrylat oder deren Gemischen, und (c) mindestens eine weitere Komponente ausgewählt aus der Gruppe bestehend aus SiO 2 -Sol oder dessen Vorläufer, A1 2 O 3 -Sol oder dessen Vorläufer, ZrO 2 -Sol oder dessen Vorläufer, TiO 2 -Sol oder dessen Vorläufer, Wasserglas, MgO, Zement, monomeren, oligomeren oder polymeren Silanen, Alkoxysilanen, Aryloxysilanen, Acryloxy- silanen, Aminosilanen, Siloxanen oder Silanolen. Beschrieben wird zudem ein Verfahren zur Herstellung des Katalysators und seine bevorzugte Verwendung.