Abstract:
The invention relates to a recombinant Mononegavirales virus (MV) vector comprising a foreign gene that is flanked by non-coding regions of a MV virus gene.
Abstract:
A mutant virus is provided which contains a mutation at a phosphorylation site in one or more of the proteins of the virus, which mutation causes the virus to be attenuated, and therefore, an improved vaccine composition can be produced therewith. The invention also relates to vaccine compositions which contain the mutant virus, as well as to methods of inducing an immune response, and of protecting mammals from infection by rabies virus. Also included in the invention are methods of producing the mutant virus and mutant viral proteins, including producing the mutant virus in a host cell which produces or even overproduces a wild-type counterpart of the mutant viral protein, which complements the other viral proteins such that production of the mutant viral particle is optimized. The invention also includes those host cells in which viral production is optimized, as well as vaccine compositions including the viral proteins, either alone or in combination with the intact virus, and to methods of inducing an immune response or protecting a mammal from infection, using the same. Also included in the invention are vectors suitable for delivering a gene to a cell of a human or animal, as well methods of delivery thereof.
Abstract:
An attenuated rabies virus for use as a live vaccine. The attenuated rabies virus expresses an immune factor that enhances immune response upon administration of the live vaccine.
Abstract:
Rabies virus (RV) nucleoprotein (N) tightly encapsidates the genomic and antigenomic RNA thereby forming the ribonucleoprotein (RNP) complex. Antigens presented in a rigid and repetitive organization are sufficient to activate B cells to proliferate. In addition to the repetitive organization, it has been shown that RV N protein induces potent T-helper responses resulting in long-lasting and strong humoral immune responses against RV. The possibility to directly manipulate the genome of RV allows us to examine whether the immunogenicity of foreign antigens can be enhanced via incorporation into the RNP structure. A recombinant RV expressing an RV N-green fluorescent protein (GFP) fusion protein. The chimeric N-GFP fusion protein was efficiently expressed and incorporated into RV RNP and virions. Moreover, the recombinant RNP induces a strong humoral immune response against GFP in mice. In contrast, mice inoculated with GFP alone or a combination of wild-type RV RNPs and GFP did not trigger any GFP-specific humoral responses using the same immunization schedule. These results indicate the usefulness of RV-based vectors as killed vaccines against other infectious diseases.
Abstract:
Live, attenuated recombinant rabies virus vaccines are generated using reverse genetics to combine the antigenic determinants that render the rabies virus non-pathogenic with the determinants that are responsible for the elicitation of an effective anti-rabies immune response. These vaccines do not affect the antigenic, and therefore the immunogenic, properties of the virus. The present invention further relates to recombinant rabies virus vaccines that express a pro-apoptotic protein, such as cytochrome c, to increase the capacity to induce apoptosis, thereby enhancing the protective immunity agains rabies. This new generation of live rabies virus vaccines represents a safe and effective approach to the eradication of rabies in wildlife, and subsequently humans and livestock.
Abstract:
The present invention provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a filovirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a filovirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present invention provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one filovirus glycoprotein or an immunogenic fragment thereof, as well as pharmaceutical compostions comprising the vaccine vectors.
Abstract:
Described herein are recombinant rabies viruses encoding rabies virus glycoprotein and at least one heterologous glycoprotein from another lyssavirus, such as Mokola virus, Lagos bat virus and/or West Caucasian bat virus. In particular embodiments, the recombinant rabies virus includes two or three heterologous lyssavirus glycoproteins. The disclosed recombinant rabies viruses can be used as pan-lyssavirus vaccines to provide protection against lyssaviruses that cause rabies.
Abstract:
The invention relates to a recombinant Mononegavirales virus (MV) vector comprising a foreign gene that is flanked by non-coding regions of a MV virus gene.
Abstract:
Rabies Virus compositions and methods are provided. The full-length sequence of Rabies Virus strain Evelyn-Rokitnicki-Abelseth (ERA) is disclosed. A reverse genetics system for producing recombinant ERA virus and derivatives thereof is provided, along with compositions including ERA and/or ERA derivative strain viruses, nucleic acids and/or proteins. In some instances, the compositions are immunogenic compositions useful for the pre- or post-exposure treatement of Rabies Virus.
Abstract:
This invention provides recombinant, replication-competent Rhabdovirus vaccine strain-based expression vectors for expressing heterologous viral antigenic polypeptides such as immunodeficiency virus envelope proteins or subparts thereof. An additional transcription stop/start unit within the Rhabdovirus genome is inserted to express the heterologous antigenic polypeptides. The HIV-1 gp160 protein is stably and functionally expressed, as indicated by fusion of human T cell-lines after infection with the recombinant RVs. Inoculation of mice with the recombinant Rabies viruses expressing HIV-1 gp160 induces a strong humoral response directed against the HIV-1 envelope protein after a single boost with an isolated recombinant HIV-1 gp120 protein. Moreover, high neutralization titers, up to 1:800, against HIV-1 are detected in the mouse sera. These recombinant viral vectors expressing viral antigenic polypeptides provide useful and effective pharmaceutical compositions for the generation of viral-specific immune responses.