Abstract:
La presente invención se relaciona con un dispositivo economizador de combustibles ubicado entre un motor térmico y su tanque de combustible. La invención comprende un sistema de intercambio térmico que precalienta un combustible convencional y un combustible secundario que son dirigidos hacia el sistema de admisión e inyección del motor térmico mediante el aprovechamiento de la baja presión, o presión de vacío, presente en dicho sistema de admisión, y en donde también existe un efecto de volatilización del combustible secundario por efecto del calor presente en un recipiente volatilizador, de manera que se efectúa una salida de combustible secundario, en estado gaseoso, hacia el sistema de admisión del motor térmico. Además, la presente invención comprende una fuente de campo magnético sobre los dos tipos de combustible, un sistema de llenado inteligente, así como con un sistema de salida de combustible líquido dosificado hacia el sistema de admisión del motor térmico.
Abstract:
A hydrogen carburetor for generating hydrogen to run an internal combustion engine and method thereof are described. In one embodiment, the system includes a heat absorber tank coupled to said engine to absorb heat energy exhausted by the engine during runtime; a water tank to supply distilled water to said heat absorber tank, wherein the distilled water is heated up using the absorbed heat energy; a steam electrolysis chamber to split hydrogen and oxygen gases from the injected heated distilled water by porous electrolysis, wherein heated distilled water is injected when the temperature in the chamber rise to a threshold value; a temperature sensing controller coupled to said chamber to sense the temperature in the chamber; a hydrogen compressor connected to a porous anode element of said chamber to collect and compress the generated hydrogen; and a fuel storage tank to store the hydrogen gas and to supply the hydrogen to the internal combustion engine through an engine carburetor or a fuel injector or a fuel air mixer. In another embodiment, the method involved thereof is described.
Abstract:
One embodiment may include a bushing (100, 300) and a seal member (102, 104, 200, 302). The bushing may be located in a cavity (56) of a stationary body (46) of an engine breathing system valve (12). The bushing may be located around a moveable stem (48) of the engine breathing system valve in order to facilitate movement of the valve. The seal member may be located in the cavity and around the stem. The seal member may substantially prevent fluid-flow between an outer diametrical surface (76) of the stem and a confronting inner diametrical surface (120, 128, 202, 308) of the seal member.
Abstract:
One embodiment may include a bushing (100, 300) and a seal member (102, 104, 200, 302). The bushing may be located in a cavity (56) of a stationary body (46) of an engine breathing system valve (12). The bushing may be located around a moveable stem (48) of the engine breathing system valve in order to facilitate movement of the valve. The seal member may be located in the cavity and around the stem. The seal member may substantially prevent fluid-flow between an outer diametrical surface (76) of the stem and a confronting inner diametrical surface (120, 128, 202, 308) of the seal member.
Abstract:
A gas circulation engine includes: a combustion chamber (CC) to which high-pressure fuel in a first high-pressure fuel supply passage (43), an oxidant and working gas are supplied; a circulation path (20) that connects an intake-side portion and an exhaust-side portion of the combustion chamber (CC) to each other; a fuel bleed-off tank (81) into which the high-pressure fuel in the first high-pressure fuel supply passage (43) is bled off; a fuel bleed-off valve (83) that permits or shuts off communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81); and a fuel bleed-off control unit (50) that permits communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81) by opening the fuel bleed-off valve (83) when the engine is stopped, the communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81) being shut off during operation of the engine.