Abstract:
The present invention relates to a method of cleaning a surface within a gas engine, the method comprising: passing ozone through an inlet to the engine and over the surface, reacting the ozone with any organic contaminants on the surface, and removing the reacted contaminants and any residual ozone from an outlet from the engine as a gaseous exhaust. The method is particularly suited to cleaning sensitive or delicate apparatus such as pre-combustion portions of a gas engine.
Abstract:
A invenção trata de um processo de combustão de matérias primas hidrocarbonadas (HC) sólidas, líquidas ou gasosas em motor térmico (100; 200) compreendendo pelo menos uma câmara de combustão (106), o dito processo compreendendo pelo menos uma iteração das etapas seguintes compondo/perfazendo um ciclo de combustão através da introdução, na dita câmara de combustão (106), de uma carga de matérias hidrocarbonadas (HC) e de um gás comburente, desencadeando uma combustão da dita carga de matérias hidrocarbonadas com o dito gás comburente; caracterizado pelo fato que o dito gás comburente compreende: - trioxigênio (O 3 ), e - dióxido de carbono (CO 2 ) e/ou trióxido de carbono (CO 3 ). A invenção igualmente diz respeito a um motor térmico implementando e operando o processo segundo a invenção e a um sistema de produção de energia a partir de matérias hidrocarbonadas implementando e operando um tal motor.
Abstract:
Die vorliegende Erfindung stellt ein Verfahren zur Energiegewinnung bei der Entspannung von Prozesserdgas (P) vor der Zuführung desselben zu einer Acetylen- Herstellungsanlage (H) bereit, das die Verfahrensschritte umfasst: a) Zuführen des Prozesserdgases (P) aus einer Prozesserdgas-Versorgungsleitung mit einer Temperatur von -10 °C bis 50 °C und einem Druck von 30 bar bis 70bar zu einer ersten Heizstufe (WT1) und Aufheizen des Prozesserdgases (P) in der ersten Heizstufe (WT1) auf eine Temperatur von 20 °C bis 40°C, b) Zuführen des in der ersten Heizstufe (WT1) aufgeheizten Prozesserdgases (P) zu einer zweiten Heizstufe (WT2) und Aufheizen des Prozesserdgases (P) in der zweiten Heizstufe (WT2) auf eine Temperatur von 70 °C bis 140 °C, c) Zuführen des in der zweiten Heizstufe (WT2) aufgeheizten Prozesserdgases (P) zu einer Entspannungsvorrichtung (E) und Entspannen des Prozesserdgases (P) in der Entspannungsvorrichtung (E) auf einen Druck von 2 bar bis 8 bar, wobei die Entspannungsvorrichtung (E) eine Kolbenexpansionsmaschine ist, die durch das Entspannen des Prozesserdgases (P) betrieben wird und Energie erzeugt. Ferner wird eine Anlage zur Energiegewinnung bei der Entspannung von Prozesserdgas (P) bereitgestellt, die sich dadurch auszeichnet, dass die Entspannungsvorrichtung (E) eine Kolbenexpansionsmaschine ist.
Abstract:
An energy transducer comprising: a cylinder; a piston within the cylinder connected to a connecting rod extending out of the cylinder and connected to a crankshaft; a chamber within the cylinder defined by the first end of the cylinder and the piston; a direct injector in fluid communication with the chamber and in fluid communication with a fuel tank such that the direct injector is capable of injecting fuel from the fuel tank into the chamber, where the fuel is hydrogen or a mix of hydrogen and oxygen; and an igniter located such that the igniter is capable of igniting the fuel within the chamber; such that ignition of the fuel within the chamber causes an explosion that forces the piston toward the crankshaft, causing the crankshaft to rotate 180, followed by an implosion that forces the piston away from the crankshaft, causing the crankshaft to complete one full rotation.
Abstract:
One embodiment may include a bushing (100, 300) and a seal member (102, 104, 200, 302). The bushing may be located in a cavity (56) of a stationary body (46) of an engine breathing system valve (12). The bushing may be located around a moveable stem (48) of the engine breathing system valve in order to facilitate movement of the valve. The seal member may be located in the cavity and around the stem. The seal member may substantially prevent fluid-flow between an outer diametrical surface (76) of the stem and a confronting inner diametrical surface (120, 128, 202, 308) of the seal member.
Abstract:
A gas circulation engine includes: a combustion chamber (CC) to which high-pressure fuel in a first high-pressure fuel supply passage (43), an oxidant and working gas are supplied; a circulation path (20) that connects an intake-side portion and an exhaust-side portion of the combustion chamber (CC) to each other; a fuel bleed-off tank (81) into which the high-pressure fuel in the first high-pressure fuel supply passage (43) is bled off; a fuel bleed-off valve (83) that permits or shuts off communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81); and a fuel bleed-off control unit (50) that permits communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81) by opening the fuel bleed-off valve (83) when the engine is stopped, the communication between the first high-pressure fuel supply passage (43) and the fuel bleed-off tank (81) being shut off during operation of the engine.
Abstract:
Turbocharged or supercharged spark ignition engine. The engine includes a source of methanol for direct injection of methanol into the engine and for delivering a portion of the methanol to a reformer for generating a hydrogen-rich gas.
Abstract:
The invention relates to a method for operating a combustion system (1), a fuel (6) being burned in at least one combustion chamber (2) with a carrier gas (7) containing oxygen while releasing an exhaust gas flow (8), ambient air (10) being separated into a product gas (12) enriched with oxygen and an exhaust air (13) enriched with nitrogen, a gas flow (9) being separated from the exhaust gas flow (8) and recirculated into the combustion chamber (2), the recirculated gas flow (9) being mixed with a product gas flow (12a) of the product gas (12) into the carrier gas (7), and the carrier gas (7) and the fuel (6) being fed into the combustion chamber (2) separately. According to the invention, the argon concentration in the recirculated gas flow (9) and/or in the carrier gas (7) is measured.