Abstract:
In the preferred embodiments an air flow diverting blade is integral to a base that doubles as a collar designed to coaxially attach to the tip end of a typical port fuel injector for internal combustion engines. Upon simple manual manipulation of the set rotational angle of the typically externally exposed portion of the port fuel injector along its longitudinal axis, as typical modern port injection systems allow after installation, the angle of the intra-port flow diverting blade can be selectively varied to either straighten existing swirl and increase top end flow, or, introduce lateral directional swirl to whatever desired angle and intensity in either direction is desired. The flow diverting blade can be configured to divert flow around the intake valve stem, guide and guide boss in such a manner to optimize the overall flow dimension of the induction system of a typical internal combustion engine.
Abstract:
A fuel injector including a sleeve having a first end proximate an outlet; a piston slidingly received in the sleeve, the piston having a first end proximate the outlet; a pumping chamber at least partially defined by the sleeve between the first end of the piston and the outlet; and a normally-open valve through which fuel passes to enter or exit the pumping chamber.
Abstract:
In a fuel injection spray pattern for an opposed piston engine, the individual spray plumes have both radial and tangential components with respect to an injection axis (102, 114, 121), which adds a swirl component to a spray pattern of fuel directly injected into the combustion chamber of the opposed piston engine.
Abstract:
A pressure swirl atomizer has a swirl chamber with an exit orifice and a plurality of tangential swirl channels disposed around the circumference of the swirl chamber. A pintle bearing surrounds a pintle. The pintle has a body portion and a nose portion that is narrower than the body portion. The nose portion has a tip that opens and closes the exit orifice and a side that is movable in the pintle bearing. In one embodiment, a return path formed between the nose portion of the pintle and the pintle bearing drains fluid from the swirl chamber when the exit orifice is closed. The nose portion positions the return path closer to a centerline of the atomizer, forcing fluid to swirl in the swirl chamber before draining. Since the fluid does not remain static in the chamber, less energy is needed to increase the fluid velocity and quickly form a desired spray pattern when the exit orifice is opened.
Abstract:
A nested fuel injector that includes an injector housing having a bore longitudinally therethrough, and a pintle assembled to the housing and positioned substantially within the bore. The pintle has a head located at an end of a cylindrical portion, wherein the head is seated in one end of the bore, and the seating of the head defines a variable-area exit orifice. A wave spring is assembled onto the pintle and configured to urge the pintle into the seating position. The bore is configured for the passage of a pressurized flow of fuel. The fuel pressure urges the pintle head away from the exit orifice to permit the pressurized fuel to flow from the bore out through the exit orifice.