Abstract:
A differential gear mechanism includes a differential case, a first side gear, a second side gear, a first pinion and a second pinion. The first side gear is rotatably mounted within the differential case and has a first outer diameter. The second side gear is rotatably mounted within the differential case and has a second diameter. The first pinion gear is meshed for rotation with the first side gear during a first meshing event. The second pinion gear is meshed for rotation with the second side gear during a second meshing event. The first and second pinion gears form a torque transfer arrangement configured for transferring torque between the first and second pinion gears and the first and second side gears to rotate the first and second side gears. The first and second outer diameters are distinct such that the first and second meshing events are offset in time.
Abstract:
A system and method for automatically defining and tuning operating parameters for a motor control device with minimal or no operator input is disclosed. The system includes a motor control device electrically connectable to an AC motor and a controller that is programmed to define a motor start-up function based on a rated current of the motor, the motor start-up function comprising an initial torque factor and an initial ramp time. The controller also triggers switching devices of the motor according to the motor start-up function to inject current into the motor during a first trial run, monitors operating conditions of the motor and motor control device during the first trial run, modifies the motor start-up function based on the monitored operating conditions, and triggers the plurality of switching devices according to the modified motor start-up function to inject current into the motor during a subsequent trial run.
Abstract:
An air regulator that when implemented inside a pneumatic tire having an internal reversible peristaltic pump prevents air from entering the peristaltic pump when a tire air pressure in a pressurizable cavity of the tire is greater than a selectable set point pressure. The teachings further include opening an air passage between an atmosphere external to the tire and an intake of the peristaltic pump when the tire air pressure in the pressurizable cavity of the tire is less than or equal to the selectable set point pressure.
Abstract:
A novel cylinder head arrangement is described for an in-line four cylinder or eight cylinder engine with each head having two end cylinders and two middle cylinders. A modified arrangement allows additional space for the installation of wider rocker arm assemblies used for variable valve lift (VVL), cylinder deactivation (CDA) and other types of variable valve actuation (VVA) in these existing cylinder head designs. In the first embodiment, cam towers of conventional designs adjacent the end two cylinders are not used. At least one end support is used which may be an outboard bearing on a camshaft for each end. The wider rocker assemblies may then be installed. In an alternative embodiment, the cam towers adjacent the inner two cylinders are eliminated and a single camshaft support piece with a support bearing is installed between the inner cylinders to provide support for the camshafts. The wider rocker assemblies may then be installed on at least one of the middle cylinders. The system also includes a novel oil control valve that operates latches in switching rocker arm assemblies.
Abstract:
An example engine assembly includes: an electric motor including an electric motor drive shaft; a first clutch positioned to apply torque through a first gear set to an internal combustion engine of the engine assembly; and a second clutch positioned to apply torque through a second gear set to a supercharger of the engine assembly.
Abstract:
An exemplary transmission may have a reverse shift rail and a locking mechanism to ensure that the reverse shift rail stops in a neutral position when disengaging from the other gear range. The reverse shift rail may be configured to move axially in a first direction to place the transmission in a drive gear, and in a second direction for a reverse gear. The transmission may also include a rail selector configured to engage with the reverse shift rail, and a reverse inhibitor configured to selectively dampen the reverse shift rail from moving in the second direction. An exemplary locking mechanism may include a main body and an arm extending from the main body. When the reverse shift rail disengages from the drive gear, the arm may be configured to contact the reverse inhibitor to substantially inhibit the movement of the reverse shift rail in the second direction.
Abstract:
An electrical power supply system includes a freestanding primary electrical unit, a non-freestanding accessory unit, and an accessory unit support system. The primary electrical unit includes a freestanding cabinet containing a primary electrical component. The accessory unit includes a non-freestanding accessory cabinet containing an accessory electrical component. The accessory unit support system is configured to couple the accessory cabinet to the primary cabinet such that the accessory unit is thereby structurally supported by the primary electrical unit. The accessory cabinet can be selectively decoupled from the primary cabinet and alternatively structurally supported using the accessory support system.
Abstract:
An online method for reconfiguring pressure and position sensors in a hydraulic system is disclosed. In one step, a sensor drift condition, a recalibration request, or an unisolated fault condition is detected. In another step, a system pressure sensor or another sensor, such as a load-sense pressure sensor, is verified as a trusted master reference sensor. Another step includes measuring and recording a first pressure reading at the master reference sensor and first voltage readings associated with first, second, third, and fourth pressure slave sensors at a first pump pressure set point. Another step includes, repeating the previous step at a second pump pressure set point. A new gain and offset for each of the first, second, third, and fourth pressure sensors can be calculated based on a comparison of the recoded first and second pressure readings and the recorded first and second voltage readings.
Abstract:
A joint for a double wall tube assembly (200) includes an adapter (100, 100a, 100b, 700, 700a, 700b) having an inner wall (150, 750) and an outer wall (120, 720) connected by a web (170, 770), and a flange (190, 730) extending from the outer wall. The inner wall (150, 750) is configured to receive an inner tube (220) of a double wall tube assembly (200). The outer wall (120, 720) is configured to be connected to an outer tube (210) of the double wall tube assembly (200).
Abstract:
A system for optimizing switching dead-time includes a power converter that includes a half-bridge circuit comprising a first switch coupled in series with a second switch, first and second state detection circuits respectively coupled to the first and second switches and configured to respectively detect an activation state of the first and second switches. First and second switch control circuits coupled respectively to the first and second switches are configured to respectively toggle the first and second switches between an activate state and a deactivated state. The first switch control circuit includes a first input configured to receive an activation signal from the second state detection circuit indicative of the activation state of the second switch, and the second switch control circuit includes a first input configured to receive an activation signal from the first state detection circuit indicative of the activation state of the first switch.