Abstract:
The presently disclosed embodiments utilize flow from a higher-energy portion of flow within the impeller flow path and inject it into the lower-energy portion of the flow path to re-energize the flow, delaying the onset of, or minimizing, large (and inefficient, entropy- generating) re-circulation zones in the flow field. By making a spanwise cut along the chord length of the splitter blade (variable blade clearance from leading edge to trailing edge), additional secondary flow occurs within the flow passages as the higher pressure flow on the pressure side of the blade can now spill over into the low-pressure suction side of the blade.
Abstract:
A rotor for collecting energy from or for imparting energy to a flowing medium has a hub and at least one rotor blade (10). In order to develop such a rotor so that its efficiency, both for collecting energy from and for imparting energy to a flowing medium, be improved, the rotor blade (10) has at least one aerodynamic or hydrodynamic corrugation that forms two edges (14, 16) with the flat part of the rotor blade. The edge (14) located in the radial direction of inflow is inclined by an angle alpha with respect to the normal to the rotor blade edges (22, 24), so that this edge, with regard to the rotor blade edge being in the direction of rotation, is outwardly oriented, whereas the other edge (16) is perpendicular to the rotor blade edges (22, 24).
Abstract:
The presently disclosed embodiments utilize flow from a higher-energy portion of flow within the impeller flow path and inject it into the lower-energy portion of the flow path to re-energize the flow, delaying the onset of, or minimizing, large (and inefficient, entropy- generating) re-circulation zones in the flow field. By making a spanwise cut along the chord length of the splitter blade (variable blade clearance from leading edge to trailing edge), additional secondary flow occurs within the flow passages as the higher pressure flow on the pressure side of the blade can now spill over into the low-pressure suction side of the blade.
Abstract:
Apparatus and method for pumping blood and other delicate fluids. The apparatus includes a rotor (12) having an impeller (18) which includes an upper section (22) and a lower section (20) with oppositely disposed surfaces (26, 28), the upper section (22) having a central opening (24). Separating surfaces (30) disposed between the upper and lower sections (22, 20) define a plurality of fluid flow passages (32) between the oppositely disposed surfaces (26, 28). The separating surfaces (30) include a leading edge (45) and a trailing edge (47), the leading edge (45) being disposed at or near the central opening (24) and the trailing edge (47) being disposed at or near the peripheral edge (34) of the impeller (18). This construction maximizes the pressure differential of the fluid from the inlet to the outlet and minimizes turbulence such that the pump has good air entrapment capabilities as well as gentle blood handling characteristics.
Abstract:
A submersible pump assembly configured to manipulate the flow of fluids to achieve sufficient flow rate and fluid pressure to efficiently pump viscous or solids-laden fluid, while minimizing the risk of pump clogging and/or damage due to the solids content of the fluid. The submersible pump assembly comprising a cylindrical housing having an intake disposed at an upstream end for receiving viscous and/or solids-laden fluid and an outlet disposed at a downstream end opposite the intake for discharging the fluid to the surface. A rotating shaft extending through the cylindrical housing along a center axis of the housing and adapted to be driven by a submersible motor. A plurality of successive pumping stages disposed in a co-axial arrangement along the rotating shaft and a helical inducer coupled to the shaft between the intake and the plurality of pumping stages. The helical inducer comprising at least a single helical turn that directly converges into the plurality of pumping stages.
Abstract:
The inventive blade (4) comprises a front surface (8) or "passive surface", and a rear surface (7) or "active surface", which are delimited by a trailing edge (4b) at one end situated downstream in the direction of flow of the fluid along the surfaces (7, 8) of the blade. In a part of its outer surface comprising the trailing edge (4b) and the areas of the front (8) and rear (7) surfaces that are adjacent to the trailing edge (4b), the blade comprises at least three edges (9, 10, 18a, 18b, 18c) which extend in a longitudinal direction of the trailing edge (4b), essentially for the entire length of the trailing edge (4b).
Abstract:
Die Erfindung betrifft ein Schaufelrad (3) zum Transportieren einer Flüssigkeit (F) durch eine Kreiselpumpe (1) mittels Rotation um eine Rotationsachse (R) in der Kreiselpumpe (1), das mit reduzierten Stagnationsgebieten betrieben werden kann und auf eine Kreiselpumpe (1) mit einem solchen Schaufelrad (3). Das Schaufelrad (3) umfasst zumindest eine erste kreisförmige Scheibe (3a) mit einer zentralen Öffnung (34) und einer sich von der zentralen Öffnung (34) zu einem in radialer Richtung gesehenen äußeren Rand (33) erstreckenden ersten Oberfläche (31), wobei auf der ersten Oberfläche (31) mehrere sich jeweils von der zentralen Öffnung (34) als Anfangspunkt (41a) zu dem Rand (33) als Endpunkt (41e) erstreckende Hauptschaufeln (41) mit einer Druckseite (41d) und einer Saugseite (41s) und zwischen zwei benachbarten Hauptschaufel (41) jeweils eine sich von einem Anfangspunkt (42a) in Richtung des Scheibenrandes (33) zu einem Endpunkt (42b) erstreckende Zwischenschaufel (42) angeordnet sind, wobei der jeweilige Anfangspunkt (42a) der Zwischenschaufeln (42) eine Distanz (DZ) zum Zentrum des Schaufelrades (3) größer des Durchmessers der zentralen Öffnung (34) besitzt und die Zwischenschaufeln (42) jeweils näher an der Druckseite (41d) der bei Rotation des Schaufelrades (3) der Zwischenschaufel (42) nachlaufenden Hauptschaufel (41) als an der Saugseite (41s) der dieser Zwischenschaufel (42) vorauslaufenden Hauptschaufeln (41) angeordnet sind.
Abstract:
A mixed-flow impeller for an electric submersible pump can include a lower end and an upper end; a hub that includes a through bore that defines an axis; blades that extend at least in part radially outward from the hub where each of the blades includes a leading edge and a trailing edge; an upper balance ring that includes a radially inward facing balance chamber surface and a radially outward facing diffuser clearance surface; and an upper guard ring disposed radially outwardly from the upper balance ring where the upper guard ring includes an axially facing diffuser clearance surface that is disposed axially between the trailing edges of the blades and the upper end.
Abstract:
Изобретение относится к области насосостроения, а именно, к конструкциям рабочих колес центробежных насосов и может быть использовано также в центробежных вентиляторах и компрессорах. Целью изобретения является уменьшение вихревого движения потока воздуха или жидкости в межлопастных каналах рабочего колеса и повышение, тем самым, напора, расхода, снижение вибрации, и как следствие, повышение КПД насоса. Поставленная цель достигается рабочим колесом насоса, вентилятора или компрессора, включающем ведущий и ведомый диски и расположенные между ними основные, периферийные и внутренние лопасти, отличающемся тем, что каждая периферийная лопасть имеет форму поверхности в виде дуги окружности и сопряжена по линии наружного диаметра рабочего колеса с одной стороны с поверхностью основной лопасти, а с другой стороны - с поверхностью внутренней лопасти таким образом, что ширина радиального канала, образованного смежными лопастями (основной и внутренней), на выходе меньше ширины радиального канала на входе в обратно пропорциональной зависимости по отношению к изменению скорости потока.