Abstract:
Método de control de una turbina eólica. La invención propuesta presenta una alternativa para máquinas con al menos un equipo de potencia (101) formado por al menos un primer convertidor electrónico (106) conectado al rotor (109) del generador, por al menos un segundo convertidor electrónico (107) capaz de suministrar o evacuar la potencia que éste consume o genera y por al menos un bus de continua (108); el método propuesto permite controlar la potencia del rotor (109) alterando la velocidad de sincronismo del generador asíncrono (103) cuando está desconectado de la red (102), mediante la variación de la frecuencia de las corrientes del rotor (109) generadas por el primer convertidor electrónico (106).
Abstract:
A wind turbine comprises a tower, a wind driven propeller mounted at the top of the tower, an asynchronous generator at the top of the tower to which the propeller is connected to drive the generator, and conductors formed of a high temperature superconducting material to conduct the output from the generator at the top of the tower to the bottom of the tower. The turbine may comprise an AC-DC convertor at the top of the tower to convert the output of the generator to DC and a DC-AC convertor at or near the base of the tower to convert the DC power output of the turbine to AC at mains frequency.
Abstract:
Die Erfindung betrifft eine Windenergieanlage zur Erzeugung einer sinusförmigen Wechselspannung mit einem einen Läufer (7) und einen Stator aufweisenden Generator, mit einem Rotor mit Rotorblättern, der mit dem Läufer verbunden ist, und mit Energieübertragungsmitteln zur Übertragung von elektrischer Energie vom nicht-drehenden Teil der Windenergieanlage auf den Rotor. Um die bei der Energieübertragung mittels Schleifringen auftretenden Nachteile wie Verschleiss, Lärm und zu geringer Wirkungsgrad zu vermeiden wird erfindungsgemäss vorgeschlagen, dass die Energieübertragungsmittel eine Asynchronmaschine,(4) deren Ständer (5) an dem nichtdrehenden Teil der Windenergieanlage und deren Läufer (6) an dem Rotor angeordnet ist, zur berührungslosen Übertragung elektrischer Energie auf den Rotor aufweisen.
Abstract:
A wind power system, for generating electric energy, having a nacelle (3); an electric machine (6) for generating electric energy from the wind, and having a stator (12) and a rotor (13); a rotary assembly (7), which rotates with respect to the nacelle (3) about an axis (A2), and includes the rotor (13) of the electric machine (6); and an electric power transfer system (35; 135) for transferring electric power from the nacelle (3) to the rotary assembly (7); wherein the electric power transfer system (35; 135) includes a first primary winding (37; 137) integral with the nacelle (3), and a first secondary winding (38; 138) wound about the axis (A2), integral with the rotary assembly (7), and coupled electromagnetically to the first primary winding (37; 137).
Abstract:
The invention relates to a method for operating a wind turbine and to a wind turbine (2) comprising a tower (4) that is secured in a foundation (3) and a nacelle (5) that is supported by the tower and is provided with a rotor (6), in addition to a compressor unit (10) that is situated in the nacelle and is connected to a compressed air accumulator, the compressed air accumulator supplying compressed air to an electric generator in order to convert the air into electrical energy and to homogenize the energy production on the output side. The invention provides a method of this type and a wind turbine of this type which permit a more efficient operation and a construction that is significantly simpler and independent of location, in particular for medium-term energy production intervals. To achieve this, the tower (4) is sealed and the compressed air generated by the compressor unit (10) is fed to said tower for intermediate storage. The tower is sealed off from the exterior and designed as a tower accumulator (12) and the compressor unit (10) that is connected to the rotor (6) by means of a drive shaft (8) and an interconnecting gearbox (9) has a pressure line (13) connected to the tower accumulator.
Abstract:
Ein Drehstrom-Asynchrongenerator (1) weist ein Gehäuse (2) auf. Im Gehäuse (2)ist eine Hauptwelle (3) gelagert, an die von außerhalb des Gehäuses (2) ein Antriebselement (4) ankuppelbar ist. Die Hauptwelle (3) ist über ein Getriebe (6) mit einer konzentrisch zur Hauptwelle (3) angeordneten Zusatzwelle (7) verbunden, so dass die Drehzahlen (nH, nZ) der Wellen (3, 7) in einem festen Verhältnis zueinander stehen. Im Gehäuse (2) ist eine Statorwicklung (11), auf der Hauptwelle (3) eine Haupt- und auf der Zusatzwelle (7) eine Zusatzrotorwicklung (13) angeordnet. In die Zusatzrotorwicklung (13) ist ein Erregerstrom (IE) einspeisbar, der in der Hauptrotorwicklung (12) einen Zwischenstrom (IZ) induziert, der wiederum in der Statorwicklung (11) einen Generatorstrom (IG) induziert. Der Generatorstrom (IG) ist abgreifbar und in ein Versorgungsnetz (18) einspeisbar.
Abstract:
Systems and processes for stopping a wind turbine having an induction generator are provided. An example process includes connecting outputs of a portable voltage sourced converter to the generator stator leads, applying a probing waveform from the portable voltage sourced converter, the probing waveform having a first amplitude and a probing frequency configured to induce a rotating magnetic field at a probing rotational velocity, measuring current and voltage on the generator leads to determine a back EMF, adjusting the probing frequency until the back EMF is substantially zero to determine an initial generator rotor rotational velocity, applying a braking waveform having a second amplitude higher than the first amplitude and having a braking frequency configured to induce a rotating magnetic field that rotates slightly slower than the generator rotor velocity, and, adjusting the braking waveform to ramp down the braking rotational velocity to a target rotational velocity.
Abstract:
A wind turbine rotary shaft is coupled to the rotary axis of a grid connected generator/alternator by magnetic means to feed power to the grid at all rotation speeds of the turbine shaft that exceed the generator speed when it acts as a motor power by the grid. The coupling is a generally circular first plate having a magnet array at the end of the generator shaft. The rotary axis of a turbine is likewise connected to a second generally circular plate. The second plate is electrically conductive, but not magnetic and is offset but adjacent to the first plate. When the turbine shaft is turning faster than the generator shaft more power is fed into the grid by the generator/alternator.