Abstract:
A turbine engine includes a turbine section with a low pressure turbine and a turbine case disposed about an axis. A frame assembly defines an outer cavity and an inner cavity with the outer cavity including at least one opening configured and adapted to communicate cooling air to the turbine case. A transfer tube is disposed within the outer cavity and is configured and adapted to receive cooling air. The transfer tube includes a bend configured to impart circumferential velocity to the cooling air within the outer cavity.
Abstract:
L'invention propose un ensemble de turbomachine comprenant un ensemble de redressement de flux d'air, comprenant au moins une aube (21) de redresseur, au moins un bras structural (30), l'aube et le bras s'étendant radialement autour d'un axe (X-X), le bras présentant une partie d'extrémité amont (31), présentant un profil d'aube de redresseur et comprenant un bord d'attaque (310) aligné avec celui de l'aube, une partie aval (33), et une partie intermédiaire (34) comprenant une paroi extrados (44) s'étendant entre un point extrême amont (A) et un point extrême aval (B). Le point extrême amont est distant du bord d'attaque du bras d'une distance axiale (XA) comprise entre 0,2c et 0.5c, c étant la longueur de la corde axiale de l'aube, et l'angle de la tangente à la parois extrados au point extrême amont est égal à celui au point extrême aval à un degré près.
Abstract:
A multi-blade fan having cutouts in the outer end of each blade and producing increased fan pressure. The multi-blade fan has the cutouts (17) in the outer end (15a) of each blade (15). Further, a projection (19) projecting in the direction of the thickness of the blade is formed at the rear part of each cutout in a pressure surface (recessed surface) of each blade. The above construction causes the exit of each cutout to face the circumferential direction, and as a result, an airflow discharged from the fan is directed in the circumferential direction to effectively increase pressure.
Abstract:
L'invention propose un ensemble de redressement de flux d'air de turbomachine comprenant: -un bras structural (30) et -une aube (21) de redresseur à l'intrados du bras structural,comprenant un bord d'attaque(22), un bord de fuite(23), et une ligne de cambrure (24), l'aube et le bras s'étendant radialement autour d'un axe (X-X) de la turbomachine et définissant entre eux un canal d'écoulement d'air, et le bras structural (30) comprenant: -une extrémité amont(31), présentant un profil d'aube (21) de redresseur, et comprenant un bord d'attaque (32) aligné avec celui de l'aube, et -un épaulement (35) situé à l'intrados du bras, définissant dans le canal un col, caractérisé en ce que l'aire (A col ) de la section du canal au niveau du col est comprise entre 0.7 et 0.9 fois l'aire (A entrée ) de la section du canal au niveau des bords d'attaque.
Abstract:
A turbine engine includes a turbine section with a low pressure turbine and a turbine case disposed about an axis. A frame assembly defines an outer cavity and an inner cavity with the outer cavity including at least one opening configured and adapted to communicate cooling air to the turbine case. A transfer tube is disposed within the outer cavity and is configured and adapted to receive cooling air. The transfer tube includes a bend configured to impart circumferential velocity to the cooling air within the outer cavity.
Abstract:
A nozzle segment for a gas turbine engine includes an arcuate outer vane platform segment. An arcuate inner vane platform segment spaced from the arcuate outer vane platform segment. A multiple of airfoils between the arcuate inner vane platform segment and the arcuate outer vane platform segment, the arcuate outer vane platform segment includes a scallop slot and a seal that seals the scallop slot.
Abstract:
Turbomachinery, such as a gas turbine engine, has parts with opposed first and second surfaces and with a cavity between the surfaces and with the first surface moving relative to the second surface. The turbomachinery further has at least one feature for creating pressure variations incorporated into the first and second surfaces.
Abstract:
A turbine engine assembly arranged relative to an axis includes a rotor blade and a feather seal with an L-shaped geometry. The rotor blade includes an airfoil and a base. The airfoil extends axially between an upstream leading edge and a downstream trailing edge, and radially out from the base. The base includes a neck and a pocket. The neck extends axially to a downstream surface. The pocket extends laterally into the neck. The feather seal extends laterally into the pocket, and includes a downstream leg that extends substantially along the downstream surface.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a seal assembly. The first component includes a groove and a groove surface. The second component includes a tongue that extends into the groove to a tongue surface. The seal assembly at least partially seals a gap between the groove surface and the tongue surface. The seal assembly includes a rope seal and a clip that attaches the rope seal to the tongue. The rope seal is arranged within the groove between the groove surface and the tongue surface.
Abstract:
A two piece spinner assembly comprises an inner structure and an outer structure. The inner structure is configured to provide structural support to the assembly, while axially retaining the fan blades of the engine in position. The outer structure is suitably placed over the inner structure such that the assembly forms a single conical unit. The spinner assembly suitably directs airflow into the engine and serves as an energy absorption device for FOD (foreign objects and debris) that may be ingested into the engine and/or impact the spinner assembly.