Abstract:
An annular air inlet duct (302) configured to receive a radially inward flow of air and circumscribing an axis of rotation of a rotatable member of a machine comprising a forward end and an aft end is described. The air inlet duct includes an unheated wall (310) and a heated wall (312) adjacent to a heat source (315). The heated wall includes a plurality of axially-spaced wall panels (320) forming a cavity (326) between each of a pair of adjacent wall panels of the plurality of axially-spaced wall panels.
Abstract:
Die Erfindung betrifft eine Dampfturbine sowie ein Verfahren zum Betreiben dieser Dampfturbine. Die Dampfturbine umfasst einen Hochdruck-Teil (1) und einen separaten, zweiflutigen Mitteldruck-Teil (11), wobei ein Kühldampf aus der Hochdruck-Teilturbine (1) in die Mitteldruck-Teilturbine (11) strömt. Der Kühldampf wird aus einem Kühldampfraum (9) entnommen, der zwischen einem Schubaugleichskolben (5) und einem Hochdruck-Innengehäuse (8) gebildet ist, und über eine Kühlleitung (24) in eine Rotor-Entlastungsnut (25) eingeleitet, welche in einem Mitteldruck-Einströmbereich (17) der Mitteldruck-Teilturbine angeordnet ist.
Abstract:
Die Erfindung betrifft eine Anordnung umfassend eine aus verschiedenen Teilturbinen (2a, 2b, 2c, 2d) bestehende Dampfturbine (1), wobei jede Teilturbine (2a, 2b, 2c, 2d) einen Rotor und ein Gehäuse (15, 16) aufweist, wobei im Betrieb durch thermische Ausdehnung des Rotors (12, 13) eine Bewegung des Gehäuses (15, 16) durch eine starre Kopplung der Gehäuse mittels einer Schubstange (17) gefolgt wird, wobei die Schubstange (17) hohl ausgeführt wird und durch eine Versorgung des Hohlraums mit einem Heizdampf eine thermische Ausdehnung möglich ist, wobei die Regelung des Zu- und Abflusses des Heizdampfes über die thermische Ausdehnung des Rotors (12, 3) erfolgt.
Abstract:
The axial flow expander(1) includes: an outer casing(2) provided with a suction port(5) and a discharge port(6) through which gas is discharged from the outer casing(2); an inner casing(9) inside which a gas passage is formed and which is provided with a first communication portion(10a) which communicates the gas passage with the suction port(5) and a second communication portion(10b) which communicates the gas passage with the discharge port(6); a rotor shaft(4) which extends in the direction along an axis(P); a bearing(7) configured to bear the rotor shaft(4); stator vanes(31) which protrude inward from an inner periphery of the inner casing(9); and moving blades(32) which protrude outward from the rotor shaft(4). The inner casing(9), the rotor shaft(4), the bearing(7), the stator vanes(31) and the moving blades(32) are integrally assembled, and the assembled members are inserted into the outer casing(2).
Abstract:
A heat shield manifold system (10) for an inner casing (12) between a compressor (14) and turbine assembly (16) is disclosed. The heat shield manifold system (10) protects the outer case (18) from high temperature compressor discharge air, thereby enabling the outer case (18) extending between a compressor (14) and a turbine assembly (16) to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system (10) may be configured such that compressor bleed air is passed from the compressor (14) into the heat shield manifold system (10) without passing through a conventional flange to flange joint that is susceptible to leakage.
Abstract:
A gas turbine engine having an engine axis and method of manufacturing the same is disclosed. The gas turbine engine may comprise a fan configured to drive air, a low pressure compressor section having a core flow path and configured to draw in and compress air flowing along the core flow path, a spool configured to drive the fan, and geared architecture configured to adjust the fan speed. The gas turbine engine may also include a housing defining a compartment that encloses the geared architecture. The housing is disposed between the core flow path and the axis, and includes a shielded mid-section that is in thermal communication with the core flow path of the low pressure compressor section. The shielded mid-section includes an outer layer and an insulator adjacent to the outer layer.
Abstract:
The exhaust system (60) includes an exhaust flow path liner (62) surrounded and supported by a plurality of structural duct segments (64, 70). Pluralities of links (84) are secured to and extend between the duct segments (64, 70) and the liner (62). A duct end (88) of the link includes a lock member (96) having a diameter greater than a width of the stem (86). The lock member (96) is configured to be secured within a capture nest (98) defined between and within adjacent junction flanges (76, 80} of the structural duct segments {64, 70) when the segments (64, 70) are secured to each other to secure the segments (64, 70) together. A catch member (100) at an opposed end of the link (84) is secured to a capture node (102) at the exhaust liner (62).