Abstract:
Es wird eine Wälzlageranordnung (1) für eine Windkraftanlage aufweisend einen Außenring (2) und einen relativ zum Außenring um eine Rotationsachse (24) drehbaren Innenring (3) vorgeschlagen, wobei zwischen dem Außenring und dem Innenring ein erstes Kegelrollenlager (4) mit ersten Wälzkörpern (5) und ein zweites Kegelrollenlager (6) mit zweiten Wälzkörpern (7) ausgebildet sind, wobei die Drehachsen (12, 13) der ersten und zweiten Wälzkörper gegenüber der Rotationsachse jeweils geneigt ausgerichtet sind und wobei das erste und das zweite Kegelrollenlager asymmetrisch ausgebildet sind.
Abstract:
A double row thrust bearing assembly (10) includes a bottom plate (11) having inner and outer conical raceways (12, 13), a top plate (14) with a flat raceway (15), and respective sets of identically formed inner and outer rollers (16, 17) mounted on respective inner and outer cages (18, 19). When the bearing is fully assembled, the apices of the inner and outer rollers directed at the same point (A) on an axis (X) of the bearing. Various relationships with respect to the size and shapes of the rollers are determined in order to maximize the bearing assembly's load carrying capacity while occupying the same spatial envelope as that of a single row thrust bearing assembly (BA) which can only support a lesser load.
Abstract:
The invention relates to an economically producible and compact encoder element (20) for displaying an adjustment and/or movement of a bearing constituent. The encoder element (20) comprises a carrier (21) and a magnetic or magnetisable encoder layer (23) applied flatly to the carrier. The encoder layer (23) is formed from a matrix material which is liquid in its raw state and a magnetic powder added thereto, and is applied directly to a carrier surface (22) in the liquid raw state by a coating method.
Abstract:
Es wird ein preisgünstig herstellbares und platzsparendes Encoderelement (20) zur Anzeige einer Stelllung und/oder Bewegung eines Lagerbestandteils angegeben. Das Encoderelement (20) umfasst einen Träger (21) und eine darauf flächig aufgebrachte magnetische oder magnetisierbare Encoderschicht (23). Die Encoderschicht (23) ist aus einem im Rohzustand flüssigen Matrixmaterial mit zugesetztem Magnetpulver gebildet, und wird durch ein Beschichtungsverfahren aus dem flüssigen Rohzustand direkt auf eine Trägeroberfläche (22) aufgebracht.
Abstract:
A bearing which has a longer useful life in mild aqueous corrosion conditions comprising rolling elements and raceways with the rolling elements coated with a thin nanocomposite (NC) coating which has higher surface hardness than, is chemically incompatible, with and has low solubility relative to the raceway surfaces. The bearing is corrosion-tolerant rather than corrosion avoidant and functions by reducing the effect that corrosion has on bearing life by preventing adhesive wear and minimizing the effect of debris damage on bearing life caused by micropits, etch marks and rust formation on the raceways.
Abstract:
A tapered roller bearing (26, 28) that is well-suited for supporting a pinion in an automotive differential (A) has a cone (44) and a cup (46) provided with opposed raceways (52, 64) that are crowned. The cone also has a thrust rib (54) provided with a rib face (58) at the large end of its raceway. In addition, the bearing has tapered rollers (48), each having a tapered side face (70) that is crowned and a large end (72) that is spherical. The rollers (48) contact the raceways (52, 64) along their crowned side faces and the rib face along their spherical end faces. The ratio of the roller length (C) to the large end diameter (D) is less than 1.5. The crowning on the raceway (52, 64), together with the crowning of the roller side face (70) provide total end relief ranging between 700 microin. and 1500 microin. per inch. The centers of contact between the side faces (70) and raceways (52, 64) are offset toward the rib face (58). The height of the rib face (58) amounts to 30% - 45% of the diameter of the large ends (72) of the rollers (48). The radius of the spherical large end face (52) for a roller exceeds 90% of the roller apex length. The runout in the large end faces is less than 50 microin. and the center of contact between the end face (72) of each roller (48) and the rib face (58) is between ranges between 0.02 and 0.04 in. All of this contributes to low torque demands by the bearing itself and wear.