Abstract:
An electromagnetic flowmeter assembly (100) is provided. The assembly (100) includes a magnetic flowmeter (116) configured to couple to a process pipe (118) at a coupling point and measure a flowrate of a flow of process fluid. The assembly (100) includes a conductive polymer reference connection (112) configured to contact the process fluid and provide an electrical connection to magnetic flowmeter electronics.
Abstract:
A magnetic flowmeter (102) for measuring flow rate of a process fluid includes: a magnetic coil (124A) arranged to apply a magnetic field to the process fluid. A pair of electrodes (124) electrically couple to the process fluid and are arranged to sense a voltage induced in the process fluid related to the applied magnetic field and the flow rate of the process fluid. A flow tube (108) of a non-conductive material is arranged to receive a flow of the process fluid therethrough. The flow tube (108) carries the magnetic coil (124A) and the pair of electrodes (124). Flow meter circuitry applies a current to the magnetic coil (124A) and receives the voltage sensed by the pair of electrodes (124). A magnetic field spreader (208A) is positioned proximate the magnetic coil (124A) and is arranged to spread the magnetic field emanating from the magnetic coil (124A) and direct the magnetic field into the flow tube (108). An exterior wrapper (206A) extends around the assembly and completes a magnetic circuit.
Abstract:
Messrohr (1) für ein Durchflussmessgerat, wobei das Messrohr (1) eine Auskleidung (A) aufweist, wobei die Auskleidung (A) wenigstens eine Dichtlippe (D1, D2, Dn) aufweist, welche Dichtlippe (D1, D2, Dn) dazu dient, eine Dichtwirkung zwischen dem Messrohr (1) und einer im eingebauten Zustand an das Messrohr (1) angrenzenden Rohrleitung (2) zu bewirken.
Abstract:
Durchfluss-Messgerät (1) mit einem dem Führen eines fließfähigen Mediums dienenden Leitungsabschnitt (2) wobei der Leitungsabschnitt (2) wenigstens teilweise aus einer Ausnehmung in einer Leiterplatte (5) gebildet wird.
Abstract:
A method and apparatus for determining a volume of a phase of a multiphase fluid flowing in a production tubular is provided. A magnetic field is imparted on the fluid to align nuclei of the multiphase fluid along a direction of the magnetic field. A radio frequency signal is transmitted into the multiphase fluid to excite the nuclei, and a signal is detected from the nuclei responsive to the transmitted radio frequency signal. An amplitude of the detected signal is determined and the volume of the phase flowing in the production tubular is determined using the determined amplitude and an amplitude of a calibration signal.
Abstract:
A method and apparatus for determining a volume of a phase of a multiphase fluid flowing in a production tubular is provided. A magnetic field is imparted on the fluid to align nuclei of the multiphase fluid along a direction of the magnetic field. A radio frequency signal is transmitted into the multiphase fluid to excite the nuclei, and a signal is detected from the nuclei responsive to the transmitted radio frequency signal. An amplitude of the detected signal is determined and the volume of the phase flowing in the production tubular is determined using the determined amplitude and an amplitude of a calibration signal.
Abstract:
Beschrieben und dargestellt ist eine Magnetkreisvorrichtung (1) zur Realisierung des Magnetkreises eines magnetisch-induktiven Durchflussmessgeräts, mit wenigstens einer ein Magnetfeld erzeugenden Spule (2b), mit wenigstens zwei sich gegenüberstehenden flächigen Polelementen (3a, 3b), zwischen denen sich im eingebauten Zustand das Messrohr des magnetisch-induktiven Durchflussmessgeräts befindet, und mit wenigstens einem magnetisch leitenden Verbindungselement (4a, 4b) zum Magnetschluss des Magnetkreises. Erfindungsgemäß ist der Querschnitt des Spulenkerns (2a) der Spule (2) oder/und des magnetisch leitenden Verbindungselements bzw. der magnetisch leitenden Verbindungselemente (4a, 4b) so klein wie möglich. Vorzugsweise ist das magnetisch leitende Verbindungselement bzw. sind die magnetisch leitenden Verbindungselemente (4a, 4b) bogenförmig ausgestaltet, so dass die resultierende Magnetkreisvorrichtung (1) eine ringförmige Außenkontur aufweist und wenigstens eines der flächigen Polelemente (3a, 3b) weiträumig umgreift.
Abstract:
A flow meter comprising a magnet, a substantially non-magnetic conduit adapted to convey conductive fluid flowing in said conduit, said conduit arranged proximate to said magnet, and a sensor for sensing distortion of lines of force created by said magnet when said fluid flows in said conduit. Neither the magnet nor the sensor need be in physical contact with the conduit that carries the conductive fluid.
Abstract:
A magnetic flow meter includes a first spud end, a second spud end, and a sensing area positioned between the first spud end and the second spud end. The sensing area has a wall thickness that is thinner than a thickness of the first spud end and the second spud end. The flow meter can be manufactured via molding while a plug is positioned in at least two holes of the magnetic flow meter. The flow meter can also be manufactured to have a near hermetic seal formed by inserting a flexible printed circuit board in a slit of a gasket and then either compressing a register cup surrounding the tube gasket or driving a pin into a center pin around which the tube gasket is positioned.
Abstract:
A sensor of the inductive type comprising at least one support, wherein the support is provided with at least one coil, and wherein the coil is adapted to be fed with a high- frequency signal. The coil or each coil part thereof has its respective windings arranged in one plane and the support is formed of a disc-shaped substrate having a deformation temperature which is at least 1000°C. The windings are provided on the substrate by vapour deposition or etching. The sensor is adapted for operation selected in the frequency range of 1 MHz - 1 GHz. Through the substrate and in the centre of said at least one coil there may be arranged a core of ferromagnetic material. The sensor is expediently embeddable with the aid of glass ceramic material or glass material in an aperture in a holder of metal or metal alloy. The sensor is, for example, useful for multiphase measurement of a fluid flow containing a fraction of water, at a pressure selected in the range of 0 - 1500 bar and a temperature selected in the range of from -5O°C to +25O°C. The sensor is particularly useful in a sensor device in which with the aid of glass ceramic material or glass material there is embedded in at least one aperture in the holder a respective capacitive sensor, the holder via an intermediate piece being connected to an attachment flange designed for mounting on pipeline equipment which carries said fluid, so that the holder when so mounted penetrates into the fluid flow. Thus, said water fraction can be detected capacitively and at least partly inductively in a first measuring range and detected inductively in a second measuring range.