Abstract:
La présente invention se situe dans le domaine des amplificateurs, et concerne un procédé d'amplification électromécanique comprenant au moins une première étape de transduction consistant à transduire un signal électrique à un résonateur mécanique ayant un mode de résonance mécanique de pulsation ω 0 , le signal électrique actionnant des oscillations non-linéaires du résonateur; une deuxième étape de transduction consistant à transduire les oscillations non-linéaires du résonateur en un signal électrique transduit, et une étape de filtrage consistant à filtrer le signal électrique transduit pour obtenir un signal de sortie. Le procédé est caractérisé en ce que le signal transduit au résonateur est obtenu en additionnant un premier signal d'entrée de première amplitude et de première pulsation ω s et un second signal de pompe de seconde amplitude supérieure à la première amplitude et de seconde pulsation ω ρ différente de la première pulsation, les première et seconde pulsations étant proches de la pulsation ω 0 du résonateur mécanique, le second signal de pompe étant choisi dans une plage de pulsations ω ρ et d'amplitude où le résonateur est actionné en régime non-linéaire; et en ce que le signal de sortie est amplifié, l'amplitude des oscillations mesurée après le filtrage variant linéairement avec le premier signal d'entrée à la pulsation ω s , et le mode de résonance obtenu est celui d'une résonance linéaire.
Abstract:
This disclosure pertains to weighing a physical item while it is moving in a servo-driven conveyor system for e-commerce, logistics, manufacturing and other applications. The introduction of an unknown mass to an electro-mechanical feedback or filter network controlling a conveyance system will modify the steady state behavior of that system in such a way that measuring the phase or frequency shift of an input signal or oscillation will enable us to infer the magnitude of that mass.
Abstract:
Die Erfindung betrifft eine Filteranordnung (1) eines Fahrzeuges (2) umfassend einen Filter (8), vorzugsweise Aktivkohlefilter, eine gefederte Aufhängung (6) zur schwingfähigen Lagerung des Filters (8) im Fahrzeug (2), eine Sensoreinheit (9) zum Ermitteln einer dem aktuellen Gewicht des Filters (8) entsprechenden Größe aus einer Schwingungsbewegung des Filters (8), und eine Auswerteeinheit (11) zum Berechnen eines Füllgrades des Filters (8) aus dem ermittelten Filter-Gewicht unter Berücksichtigung des Leergewichts des Filters (8), wobei der Filter (8) um eine fahrzeugfeste Drehachse (D) schwingfähig aufgehängt ist.
Abstract:
A method includes receiving characteristic information from a sensor. The characteristic information may be representative of a characteristic of a weight bearing structure of an aircraft when a force is applied to the weight bearing structure. The method includes determining a weight of the aircraft based on the characteristic information.
Abstract:
Methods and devices relating to measuring a landing position and mass of an analyte adsorbed to a nanomechanical resonator by resolving adsorbate-induced frequency shifts in at least two modes of a resonator resonance frequency, where during the resolving of the frequency shifts in the at least two modes analysis is so that the transformation (G) from the fractional-frequency shift pair to the analyte mass-position pair is one-to-one. Complex protein mixtures can be analyzed at high sensitivity and resolution.
Abstract:
Laterally oscillating gravimetric sensing device embeddable under micro- f luidic channels and fabricated with micro-electro mechanical systems (MEMS) technology, which detects biological cells and analytes by measuring the change of mass attached on its surface is composed of four main groups, namely a resonator that can be placed onto the basis of the channel, components of the resonator bio-activation, a micro f luidic channel, and the microfabrication techniques, and its main components are the proof mass (1), comb fingers fixed to proof mass (2), folded spring beams (3), channel floor and mechanical soil (4), stationary electrodes (5), comb fingers attached to the stationary electrodes (6), golden film deposited onto the mass (7), immobilized biologic recognition molecules (8), and micro fiuidic channel placed on resonator structure (9).
Abstract:
An apparatus (10) for measuring the weight of a preform for optical fibres during a chemical deposition process for the formation of a preform is herein described. The apparatus comprises at least one elastic constraint (11a, 11b) associated with at least one end portion (100a, 100b) of an elongated element (100) constituting a chemical deposition substrate for the formation of the preform, a device (110) for inducing an oscillation, for example axial, on said elongated element (100), a device (111) for detecting the frequency of oscillation of said elongated element (100) and a device (112) for calculating the weight of the preform according to the detected frequency of oscillation. Advantageously, the device of the invention allows the realisation of a method for measuring the weight of the preform wherein the errors in measurement caused by thermal drift effects, by the axial distribution of the masses on the preform and by loads which are different to the mass of the preform in formation are reduced to below the required precision in measurement. _________________________
Abstract:
The invention relates to the application of the techniques of nanoelectromechanical system (NEMS) to ultrasensitive mass detection. A pulsed flux of atoms is adsorbed onto the surface of a 32.8 MHz nanomechanical resonator within an ultrahigh vacuum environment. The mass-induced frequency shifts from these adsorbates are then used to demonstrate a mass sensitivity of ∼1.46x10 6 Daltons (Da). For resonators operating up to frequencies of 72 MHz, inverse mass responsivities as small as ∼8x10 -20 grams/Hz (5x10 4 Da/Hz) are obtained. Our results offer a new approach to ultrahigh resolution mass spectrometry of individual, electrically-neutral macromolecules with clear prospects for single Dalton sensitivity.
Abstract:
A method of determining information relating to the mass of a semiconductor wafer is disclosed. The method comprises loading the semiconductor wafer on to a measurement area of a weighing device having weight compensation means arranged to compensate for a predetermined weight loaded on to the measurement area; generating measurement output indicative of a difference between the weight of the semiconductor wafer and the predetermined weight; and using the measurement output to determine information relating to the mass of the semiconductor wafer. Also discloses is a corresponding weighing device for determining information relating to the mass of a semiconductor wafer.