Abstract:
A method of measuring a flow line deposit comprising: providing a pipe comprising the flow line deposit; measuring unattenuated photon counts across the pipe; and analyzing the measured unattenuated photon counts to determine the thickness of the flow line deposit and associated systems.
Abstract:
For volumetric analysis of the elemental composition of a measured sample (3) the method of three-dimensional scanning is executing using fluorescence induced by electromagnetic radiation, in which the primary beam (1) of electromagnetic radiation is flattened and is directed at the measured sample (3) in which it irradiates the measured area (6). From the measured area (6) there exits fluorescence radiation, which is almost completely shielded by the shielding means (7) to a secondary beam (9), which is released towards the shielded detector (4) through the permeable area (8) formed in the shielding means (7). The secondary beam (9) projects the image of the measured area (6) onto the shielded detector (4), which records the data of the measured area (6) and subsequently uses the data to obtain an elemental composition of the measured sample (3), including the distribution of concentration of elements in the sample volume.
Abstract:
For each X-ray path through a tissue, numerous trials are conducted. In each trial, X-ray photons are emitted along the path until a Geiger-mode avalanche photodiode "clicks". A temporal average - i.e., the average amount of time elapsed before a "click" occurs - is calculated. This temporal average is, in turn, used to estimate a causal intensity of X-ray light that passes through the tissue along the path and reaches the diode. Based on the causal intensities for multiple paths, a computer generates computed tomography (CT) images or 2D digital radiographic images. The causal intensities used to create the images are estimated from temporal statistics, and not from conventional measurements of intensity at a pixel. X-ray dosage needed for imaging is dramatically reduced as follows: a "click" of the photodiode triggers negative feedback that causes the system to halt irradiation of the tissue along a path, until the next trial begins.
Abstract:
Provided is a method for acquiring information relating to a composition of a detected object from results of a measurement, using radiation, this method including: a step for acquiring by a computer a result of measuring the detected object using radiation; a step for estimating by a computer a chemical composition ratio of the detected object, using an equation that contains a value derived from the measurement result as a constant and contains a value derived from the chemical composition ratio of the detected object as a variable, and then solving the equation; and a step for outputting the estimated chemical composition ratio or a physical property value acquired based on the estimated chemical composition ratio as information relating to the composition of the detected object.
Abstract:
Periodic spatial patterns of x-ray illumination are used to gather information about periodic objects. The structured illumination may be created using the interaction of a coherent or partially coherent x-ray source with a beam splitting grating to create a Talbot interference pattern with periodic structure. The object having periodic structures to be measured is then placed into the structured illumination, and the ensemble of signals from the multiple illumination spots is analyzed to determine various properties of the object and its structures. Applications to x-ray absorption/transmission, small angle x-ray scattering, x-ray fluorescence, x-ray reflectance, and x-ray diffraction are all possible using the method of the invention.
Abstract:
The present invention proposes a quantitative radiographic method using X-ray imaging. This invention uses the ratio of the absorption signal and the (small-angle) scattering signal (or vice-versa) of the object as a signature for the materials. The ratio image (dubbed R image) is independent from the thickness of the object in a wide sense, and therefore can be used to discriminate materials in a radiographic approach. This invention can be applied to imaging systems, which can record these two signals from the underlying object (for instance, an X-ray grating interferometer). Possible applications of the suggested invention could be in material science, non-destructive testing and medical imaging. Specifically in this patent, we illustrate how this invention can be used to estimate the volumetric breast density. The use of the R image and the corresponding algorithm are also presented hereafter.
Abstract:
Eine Vorrichtung (100) zur automatischen Röntgenprüfung eines sich in Bewegung befindenden Prüfobjekts (120) mit einer eine Röntgenquelle (110) und einen Flächendetektor (130) aufweisenden Röntgenanordnung (105) umfasst eine Manipulationseinrichtung (150) zum Bewegen des Prüfobjekts (120) relativ zu der Röntgenanordnung (105) in eine Prüfposition Y P zwischen der Röntgenquelle (110) und dem Röntgendetektor (130), wobei das Prüfobjekt (120) bei Durchlaufen der Prüfposition Y p eine Relativgeschwindigkeit v B zu der Röntgenanordnung (105) aufweist, wobei folgende Beziehung bezüglich der Relativgeschwindigkeit v B erfüllt ist: (formula 1) oder falls die für die Applikation geforderte Ortsauflösung niedriger ist als die effektive Pixelgröße: (formula 2) mit einer Bildaufnahmezeitdauer tint , einer Relativgeschwindigkeit v B und einer effektiven Pixelgröße oder einer Soll-Ortsauflösung, die auf dem Verhältnis zwischen dem Quelle-Detektor- Abstand von Röntgenquelle zu dem Flächendetektor und dem Quelle-Prüfobjekt- Abstand von der Röntgenquelle zu dem Prüfobjekt basiert, eine Verarbeitungseinrichtung (160) zum Erfassen einer Röntgenaufnahme des sich mit der Relativgeschwindigkeit v B bewegenden Prüfobjekts (120) an der Prüfposition (Y 2 ) mittels des Flächendetektors (130) und eine Auswerteeinrichtung (170) zum automatischen Auswerten der Röntgenaufnahme des Prüfobjekts (120) hinsichtlich eines Material- oder Beschaffenheitsmerkmals mittels einer Bildverarbeitungseinrichtung.
Abstract:
Die Erfindung betrifft ein Verfahren zur Charakterisierung der Katalysatorstruktur in einer Brennstoffzelle, und dabei insbesondere die Transmissions-Röntgenabsorptionsmessungen (XAS), bei der ein neues Brennstoffzellendesign eingesetzt wird. Die Brennstoffzelle umfasst eine erste (planare) Elektrode mit einem ersten Katalysator, eine zweite (planare) Elektrode mit einem zweiten Katalysator, sowie eine zwischen den Elektroden angeordnete Elektrolytmembran mit einer Schichtdicke l m , wobei die erste Elektrode wenigstens einen katalysatorfreien kreisförmigen Bereich mit einem Radius R 1 max aufweist. Anders als bislang üblich weist die zweite Elektrode der erfindungsgemäßen Bennstoffzelle ebenfalls einen katalysatorfreien kreisförmigen Bereich mit einem Radius R 2 1 max auf. Vorteilhaft gilt 0,5 l m ≤ [R 1 max - R 2 ] ≤ 2 l m . Simulationen belegen, dass bei diesen Untersuchungen, die nur einen schmalen katalysatorhaltigen Probenring erfassen, die lokale Stromdichte über die Oberfläche nahezu konstant gehalten werden kann, und daher die hierbei erfassten Katalysatorteilchen deutlich repräsentativer für die gesamte Katalysatorschicht sind, als bei den bislang erfolgten Untersuchungen mit Brennstoffzellen, die eine komplett kreisförmige Messgeometrie als Probe verwenden.