Abstract:
Optical systems and methods for object detection and location. One example of an optical system includes a laser radar optical source positioned to emit a pulsed laser beam, a non-mechanical beamsteering device positioned to scan the beam in a linear scan over a first area of a scene, a laser radar detector positioned to receive and integrate a reflection of the beam, a read-out integrated circuit (ROIC) configured to provide a first read-out signal based on the integrated reflection, and a controller configured to receive the first read-out signal, determine a range to the first area based on a time of flight of the pulsed laser beam, and identify a presence of an object within the scene based on a signal level of the first read-out signal, the first signal level corresponding to a reflectivity of a portion of the object within the first area of the scene.
Abstract:
Methods and apparatuses for finding, extracting and for providing of echoes with detail functions are described. In particular, an echo extraction method for extracting an echo (109, S1, max1, max2, max3, e1, e2) from an echo function (100, 500, 2900, 4900) is described. The method comprises receiving the echo function (100, 500, 2900) and decomposing the echo function in at least one detail function (D1, D2, D3, D4, D5, D6, D7, D8, D9), wherein the at least one detail function (D1, D2, D3, D4, D5, D6, D7, D8, D9) comprises a plurality of first coefficients (2902). Each of the at least one detail functions (D1, D2, D3, D4, D5, D6, D7, D8, D9) represents a different degree of detail of the echo function (100, 500, 2900), wherein the degree of detail relates to a form of a base function (700, 900, 1000, 1100, 1200, 1805, 2600, 2700, 3501, 3506). Furthermore, the method comprises eliminating at least one of the plurality of first coefficients (2902) and applying a reconstruction regulation or scheme, which depends on the form of the base function, for generating a smoothed echo function (2901). Thereafter, at least one echo (109, S1, max1, max2, max3, e1, e2) is determined from the smoothed echo function (2901).
Abstract:
Technology is disclosed for measuring distances. A measurement device emits a beam that reflects on the surface of an object. The measurement device determines the distance to the object, based on the time of flight of the beam from transmission to capture by the measurement device. The device includes a light source adapted to provide an outgoing reference beam. A detector is aligned to receive a return beam, wherein said return beam results from a reflection of said outgoing reference beam from an object outside of said distance measurement device. A diffuser is provided adjacent to the detector aligned to receive said return beam.
Abstract:
Disclosed is a laser rangefinder and method thereof. By using characteristics that noise has non-correlation and signals have correlation, laser beams are output to a target to find a range to the target with iteration rates of thousands of times per second, signals for each range-finding are binary-quantized using a sampling frequency corresponding to a range-finding resolving power, and data are accumulated. After this, the accumulated data are processed in a statistical manner to detect a target signal and produce a target range based on the target signal. According to the present invention, the rangefinder for outputting low-power laser beams, using the laser beams reflected from the target, and detecting a range to the target, easily and accurately detects target signals in the noise.
Abstract:
A reflected laser pulse (23) is received by a detector (34) which is a single component of a detector array (30). The reflected laser pulse is then amplified by an amplifier (36) and sent through a matched filter (38) to optimize the signal-to-noise ratio. A data sampler (40) takes samples of the reflected laser pulse (23) and stores the data samples within a temporary data storage (42). A comparator (44) compares each data sample in the temporary data storage (42) to a predetermined threshold constant to determine if the threshold constant has been exceeded. When the threshold constant is exceeded, the data from the temporary data storage (42) is sent to a buffer (48) where it is held while an analog-to-digital converter (50) digitizes the samples for use by a computer (26) in identifying an object and determining the location of the detected object. The identity and location of the detected object are displayed on a display device (32).
Abstract:
Circuit de détection d'impulsions lumineuses destiné à être connecté à une photodiode (2), le circuit de détection comportant une capacité d'intégration (Cint), des moyens de décharge (13) et des moyens de comparaison (12) adaptés à comparer une tension d'intégration (Vint) aux bornes de la capacité d'intégration avec un seuil de tension de référence (Vseuil) pour produire un signal de détection d'une impulsion lumineuse. Le seuil de tension de référence (Vseuil) est un seuil auto-adaptatif dépendant d'un niveau de bruit de fond lumineux. Dispositif de détection comprenant une photodiode et un tel circuit de détection. Matrice de détection comportant une pluralité de tels dispositifs de détection.
Abstract:
A circuit for readout from for readout from a focal plane array having a number of pixels, includes, for each one pixel, an adaptive photodetector load circuit (15) coupled to a detector for the one pixel, a trans-impedance amplifier (35), the detector being AC coupled to the trans-impedance amplifier, a comparator component, receiving an AC coupled output of the trans-impedance amplifier and comparing the AC coupled output to a predetermined threshold, a sample and hold ring comprising a number charge storage components connected in parallel, each one charge storage component comprising a capacitor (60) in series with an enabling three point switching component (62) and a pulse detection logic circuit receiving an output of the comparator component.
Abstract:
A method for detecting objects in a scene using a synchronized illuminating and sensing process is provided herein. The method includes the following steps: illuminating a light beam along an illumination line within a scene; sensing reflections of said light, wherein said reflections come from objects located within a specified depth of field within said scene, along a sensing line; generating a tempo spatial synchronization between the illumination line and the sensing line, wherein said synchronization determines said depth of field; relatively shifting at least one of: the illuminating line, and the sensing line, based on said tempo spatial synchronization; and accumulating said reflections, thereby detecting said objects.