Abstract:
An optical assembly is disclosed, comprising: a curved reflector disposed on an optical path between a source of electromagnetic radiation and a target onto which the electromagnetic radiation is to be directed; an adaptive optical element disposed on the optical path between the source and the target, wherein the adaptive optical element is controllable to change an angle through which the electromagnetic radiation on the optical path is deflected by the adaptive optical element; and a controller configured to control the adaptive optical element so as to move a point at which the optical path intersects a surface of the curved reflector, thereby to produce a variation in a part of the optical path beyond the curved reflector. A control method of such an optical assembly is also disclosed.
Abstract:
Es wird ein stereoskopisches optisches System (1) offenbart, welches ein erstes optisches Teilsystem (2L) mit einer Mehrzahl von optischen Elementen (4L- 12L) zur Bereitstellung eines linken Abbildungsstrahlengangs (14L) des stereoskopischen optischen Systems (i) sowie ein zweites optisches Teilsystem (2R) mit einer Mehrzahl von optischen Elementen (4R-12R) zur Bereitstellung eines rechten Abbildungsstrahlengangs (14R) des stereoskopischen optischen Systems (1) aufweist. Das erste optische Teilsystem (2L) weist wenigstens eine erste optische Linse (4L) mit einer ersten optischen Oberfläche (15L) auf, die im Bereich des linken Abbildungsstrahlengangs (14L) eine Teilfläche einer ersten rotations symmetrischen mathematischen Fläche (31) ist. Diese erste mathematische Fläche (31) weist bezogen auf eine erste Symmetrieachse (16L) einen ersten maximalen Radius (Rl) auf . Das zweite optische Teilsystem (2R) weist wenigstens eine zweite optische Linse (4R) mit einer zweiten optischen Oberfläche (15R) auf, die im Bereich des rechten Abbildungsstrahlengangs (14R) eine Teilfläche einer zweiten rotationssymmetrischen mathematischen Fläche (31) ist. Diese zweite mathematische Fläche (31) weist bezogen auf eine zweite Symmetrieachse (16R) einen zweiten maximalen Radius (R2) auf . Dabei ist die erste optische Linse (4L) eine erste of f-axis Linse (4L) , deren erster Flächenschwerpunkt (17L) ihrer ersten Oberfläche (15L) von der ersten Symmetrieachse (16L) der ersten mathematischen Fläche (31) einen Abstand (AL) aufweist, der größer als ein 0,2-faches des ersten maximalen Radius (Rl) der ersten mathematischen Fläche (31) ist. Weiter ist die zweite optische Linse (4R) eine zweite of f-axis Linse (4R) , deren zweiter Flächenschwerpunkt (17R) ihrer zweiten Oberfläche (15R) von der zweiten Symmetrieachse (16R) der zweiten mathematischen Fläche (31) einen Abstand (AR) aufweist, der größer als ein 0,2-faches des zweiten maximalen Radius (R2) der zweiten mathematischen Fläche (31) ist. Außerdem wird ein mittels Umlenkelementen mehrfach gefaltetes stereoskopisches optisches System offenbart. Weiter werden eine Kopflupe und ein Operationsmikroskop offenbart, in welche das stereoskopische optische System integriert ist.
Abstract:
L'nvention se rapporte à un dispositif de prise de vue pour lequel on cherche à réduire l'encombrement. Selon l'invention on associe une division permanente du champ objet observé par le dispositif à une configuration catadioptrique.
Abstract:
The invention concerns an optical device for a system presenting collimated images comprising a spherical mirror (1) used off axis. The invention enables to present to the user (3) an image whereof the distortion caused by the spherical mirror (1) has been corrected. For this purpose the device comprises an additional aspheric mirror (21) the surface of which forms in of the unfolded optics reflection plane (P) a curve (26) whereof the radius of curvature is variable. The surface ensures a correction of the eye pupil image given by the spherical mirror (1): the pupil image is rectified on the optical axis. The surface can be a paraboloid, an ellipsoid and can have a rotational symmetry. The invention is particularly applicable to helmet visors for aircraft pilot.
Abstract:
A 3D imaging apparatus with enhanced depth of field to obtain electronic images of an object for use in generating a 3D digital model of the object. The apparatus includes a housing having mirrors positioned to receive an image from an object external to the housing and provide the image to an image sensor. The optical path between the object and the image sensor includes an aperture element having apertures for providing the image along multiple optical channels with a lens positioned within each of the optical channels. The depth of field of the apparatus includes the housing, allowing placement of the housing directly on the object when obtaining images of it.
Abstract:
Image-intensifying devices (for example, glasses, goggles, etc.) suitable for certain commercial and entertainment applications by virtue of their light weight, small size, and economical production are disclosed. In one embodiment, input light passes through an Amici reflector, which is used to adjust the orientation of the intensified image to register it with the real world. In another embodiment, input light passes through at least two Amici reflectors, which are used to adjust the orientation of the intensified image to register it with the real world. In alternate embodiments, at least one Amici reflector folds the light at a non- perpendicular angle and/or input light is rotated by an angle other than (180°). Other embodiments include a field-flattening lens disposed in front of an image intensifier. The intensified image is then sent through a projective lens assembly to reach the viewer' s eye.
Abstract:
The invention relates to a stereoscopic optical system (1) which comprises a first optical subsystem (2L) with a plurality of optical elements (4L-12L) for providing a left-hand imaging beam path (14L) of the stereoscopic optical system (1) and a second optical subsystem (2R) with a plurality of optical elements (4R-12R) for providing a right-hand imaging beam path (14R) of the stereoscopic optical system (1). The first optical subsystem (2L) has a least one first optical lens (4L) with a first optical surface (15L) which constitutes a partial surface of a first rotationally symmetric mathematical surface (31) in the area of the left-hand imaging beam path (14L). Said first mathematical surface (31) has a first maximum radius (R1) in relation to a first axis of symmetry (16L). The second optical subsystem (2R) has a least one second optical lens (4R) with a second optical surface (15R) which constitutes a partial surface of a second rotationally symmetric mathematical surface (31) in the area of the right-hand imaging beam path (14R). Said second mathematical surface (31) has a second maximum radius (R2) in relation to a second axis of symmetry (16R). The first optical lens (4L) is a first off-axis lens (4L) whose first center of gravity (17L) of its first surface (15L) has a distance (AL) from the first axis of symmetry (16L) of the first mathematical surface (31), which is greater than 0.2 times the first maximum radius (R1) of the first mathematical surface (31). The second optical lens (4R) is a second off-axis lens (4R) whose second center of gravity (17R) of its second surface (15R) has a distance (AR) from the second axis of symmetry (16R) of the second mathematical surface (31), which is greater than 0.2 times the second maximum radius (R2) of the second mathematical surface (31). The invention also relates to a stereoscopic optical system which is multiply folded by means of deflection elements. The invention finally relates to a headset magnifier and to a surgical microscope into which the stereoscopic optical system is integrated.
Abstract:
A rear projection display system and associated optical system are described with a reduced field angle. The rear projection display system includes a screen (20) and a housing. The optical system includes a light engine (102), a first mirror (104), a second mirror (106) and a Fresnel lens (108) arranged to achieve a thin housing. The light engine (102) is generally disposed in an upper region o the housing, and projects light onto the first mirror (104), which can be located at a bottom portion of the housing. The first mirror (104) reflects the projected light onto the second mirror (106), which in turns reflects the light towards the Fresnel lens (108), whic transfers the light onto the screen (20). A total internal reflection Fresnel lens (108) is used to reduce cost and complexity without sacrificing image quality and housing thinness.
Abstract:
A catadioptric projection objective for imaging an off-axis effective object field arranged in an object surface of the projection objective onto an off-axis effective image field arranged in an image surface of the projection objective has: an optical axis; an effective object field situated entirely outside the optical axis and having a length A in a first direction and a width B in a second direction perpendicular to the first direction such that a circular area of minimum size enclosing the effective object field de-fines a radius R EOF of the effective object field according to: (I); and a circular design object field centered around the optical axis having a design object field radius R DOF , where the pro-jection objective is essentially corrected with respect to image aberra-tions in zones having radial coordinates smaller than R DOF and wherein the projection objective is not fully corrected in zones having radial coor-dinates larger than RDOF. The conditions: R DOF = γ R EOF and 1 γ 1 are possible with a compact design. Arcuate effective object fields are preferably used.
Abstract:
A portable voice communication device such as a cellular telephone incorporated a virtual image display module (10) so as to provide a virtual image of displayed information that is viewable while the viewer is communicating via the phone. The virtual image display module is movably mounted on a hand held frame (52) so that it can be moved from a compact storage position to an extended in-use position. Moreover, a linkage between the virtual image display module and an earphone speaker module (54) increases the distance between the two modules to accommodate a comfortable viewing distance when the earphone is positioned adjacent a user's ear.