摘要:
A touch-sensitive apparatus operates by light frustration (FTIR) and comprises a light transmissive panel (1) with a front surface (5) and a rear surface (6). Light emitters (2) are optically coupled to the panel (1) at entry ports along a periphery region of the panel (1), and light detectors (3) are optically coupled to the panel (1) at exit ports along the periphery region for detecting light transmitted inside the panel (1). At least one optical sheet (20) is provided on the rear surface (6) in the periphery region. In an outcoupling installation, the light detectors (3) are arranged at the respective optical sheet (20) to receive, on a respective light-sensitive surface (3A), light from the optical sheet (20), and each light detector (3) is arranged with the light-sensitive surface (3A) essentially perpendicular to the rear surface (6). In an incoupling installation, each light emitter (2) is arranged at the respective optical sheet (20) to emit diverging light with a main direction that is essentially parallel to the rear surface (6) such that a portion of the diverging light impinges on the optical sheet (20) so as to define a respective entry port.
摘要:
Embodiments described herein are directed to a lighting fixture including a lightguide that distributes light from a major surface, a light assembly including light sources arranged linearly, and a frame including a means for providing a force that urges the light assembly against an edge of the lightguide. A standoff or spacer can provide an air gap between a light source of the light assembly and the waveguide edge. In various embodiments, the lighting fixture may incorporate a spring, a spring finger, a spring clip, a screw, or other means for securing the light assembly against the edge of the lightguide. In this manner, substantially all light provided by the light assembly is emitted into the edge of the lightguide. The fixture is formed to accommodate tolerances among elements of the lighting fixture, while maintaining the light assembly securely against the edge of the lightguide.
摘要:
An optically redundant light emitting device includes a light transmitting film comprising an array of coupling lightguides extending from a light emitting area defined within the light transmitting film. Each coupling lightguide is bent to form a stacked array of coupling lightguides. A first group of light sources comprising at least one light source is positioned to emit light into the stacked array of coupling lightguides, and a second group of light sources comprising at least one light source is positioned to emit light into the stacked array of coupling lightguides. A first optical path of the light emitted from the first group of light sources overlaps with a second optical path of the light from the second group of light sources in each coupling lightguide.
摘要:
A light source includes a light emitting unit including a light emitting layer for electrically emitting a light, and a waveguide for emitting a light irradiated from the light emitting unit into air through a light take-out surface formed on an end face, wherein an area of the light take-out surface of the waveguide is set to be smaller than that of the light emitting layer. Thus, the light irradiated from the light emitting layer is emitted through the light take-out surface of the waveguide. Therefore, it is possible to freely determine the size of the light source by the size of the light take-out surface of the waveguide. Consequently, it is possible to easily obtain a very small light source.
摘要:
An illumination unit free of the problems of luminance and whiteness variations attributable to the contact of a reflecting sheet with a protective member. A light source side end part (3a) of the reflecting sheet (3) and the protective member (5) are disposed with a space (H) for avoiding contact with each other. Means for ensuring the space (H) for avoiding the contact with each other may be reduction of the projecting length of the light source side end part (3a) of the reflecting sheet (3), shifting of the position of the light source (2), and reduction of the diameters of the light source (2) and protective member (5).
摘要:
The display device comprises a transparent illuminating sheet (1) and a remote source of light. A side-emitting fibre-optic cable (5) transmits light from the source and is so disposed along an edge (3) of the sheet that light is directed into the sheet (1). The sheet (1) overlies material to be displayed and illuminated by light emitted through face (4) of the sheet (1). The image can be viewed through an opposed face. These images may be displayed under subdued illumination, with a profile sufficiently thin to be safely mountable to a vehicle or the like.
摘要:
A light source (25) for emitting collimated light (29) in particular for a large area luminaire (21) comprises a light guide unit (43) optionally comprising a plurality of light guide strips (91) configured for guiding light received at the at least one lateral coupling face (47), for example, by total internal reflection. The light guide strips comprise a plurality of localized light source regions (57) at a main front face (55A) for having light pass there through, wherein the light source regions (57) are provided along the light guide strip (91) within a non-source region (59). The light source (25) further comprising a plurality of light emitting units (41) for emitting light into the light guide strips (91) through respective portions of the at least one coupling face (47), and a collimation unit (45) extending along the main front face (55A) and comprising a plurality of collimating elements. Each collimating element, which may be a compound parabolic concentrator or TIR lens, comprises an input side and an output side, is optically associated to one of the plurality of light source regions (57), and is configured to receive light emerging from the associated light source region (57) at its input side and to emit collimated light (29) from a respective collimated light emitting region (61) formed at its output side. In another embodiment the light emitting units are configured to emit primary light having a spectral distribution that compensates for spectral losses accumulated by the primary light while propagating within the light guide unit. In a further embodiment the collimated light has a direction that is tilted with respect to the normal to a light emitting face of the light source. In an additional embodiment the ration of the area of the plurality of light source regions with respect to the area of the main front face and/or the area of the non-source region is less than or equal to 20%. In a further embodiment a plurality of reflective structures is associated with the light source regions.