Abstract:
The invention relates to method and apparatus for transmitting an optical signal having optical energy substantially in a high order spatial mode. The optical waveguide, in one embodiment, includes a few mode fiber designed to have specific transmission characteristics for supporting the single high order spatial mode, and the few mode fiber transmits the single high order spatial mode. The optical waveguide, in one embodiment, has a dispersion and a dispersion slope for a given transmission bandwidth. Another aspect of the invention includes a method for transmitting an optical signal having optical energy substantially in a single high order spatial mode. The method includes the steps of providing a few mode fiber, which supports optical energy in the single high order spatial mode. In one embodiment, the single high order spatial mode is the LP02 spatial mode. In another embodiment, the few mode fiber supports an optical signal having optical energy having less than twenty spatial modes.
Abstract:
An optical fiber having a structure suitable for long-distance optical communication and an optical transmission line comprising the same. The optical fiber comprises a core region extending along a predetermined axis and a clad region surrounding the core region. The optical fiber has characteristics at the 1.55 mu m wavelength, such as an effective cross section of more than 110 mu m , a dispersion of 18 to 23 ps/nm/km, and a dispersion slope of 0.058 to 0.066 ps/nm /km.
Abstract:
The present invention generally relates to the field of fiber optics, and more particularly, to apparatuses, systems, and methods directed towards improving effective modal bandwidth within a fiber optic communication environment. In an embodiment, a multimode optical fiber in accordance with the present invention comprises a core and cladding material system where the refractive indices of the core and cladding are selected to modify the shape of the profile dispersion parameter, y, as a function of wavelength in such a way that the alpha parameter (α- parameter), which defines the refractive index profile, produces negative relative group delays over a broad range of wavelengths. The new shape of the profile dispersion parameter departs from traditional fibers where the profile dispersion parameter monotonically decreases around the selected wavelength that maximizes the effective modal bandwidth (EMB).
Abstract:
Disclosed is an optical fiber having a desired dispersion value to sufficiently suppress a non-linearity phenomenon, that is, a four-wave mixing phenomenon, occurring at a channel spacing of 50 GHz while minimizing the expense consumed for a compensation for dispersion. The optical fiber satisfies optical characteristics defined by a dispersion value of 7 to 10 ps/nm-km at a wavelength of 1,550 nm, a zero dispersion wavelength of 1,450 nm or less, and a cut-off wavelength of 1,250 nm or less. The optical fiber includes a core having a desired diameter (d1) and a desired refractive index (n1), the cladding surrounding the core and having a refractive index (ncl) less than the (n1), of the core (ncl
Abstract:
Disclosed is an optical fiber having a desired dispersion value to sufficiently suppress a non-linearity phenomenon, that is, a four-wave mixing phenomenon, occurring at a channel spacing of 50 GHz while minimizing the expense consumed for a compensation for dispersion. The optical fiber satisfies optical characteristics defined by a dispersion value of 7 to 10 ps/nm-km at a wavelength of 1,550 nm, a zero dispersion wavelength of 1,450 nm or less, and a cut-off wavelength of 1,250 nm or less. The optical fiber includes a core having a desired diameter (d1) and a desired refractive index (n1), the cladding surrounding the core and having a refractive index (ncl) less than the (n1), of the core (ncl
Abstract:
The invention relates to methods and apparatus for transmitting an optical signal having optical energy. The system, in one embodiment, includes at least one transmission span including an optical waveguide. The transmission span transmits substantially all of the optical energy in a single high order spatial mode. The optical wageguide, in one embodiment, has a dispersion and a dispersion slope for a given transmission bandwidth. In another embodiment the invention further relates to an optical transmission system which includes a spatial mode transformer positioned to receive an optical signal. The spatial mode transformer transform the optical energy of the optical signal from a low order spatial mode to a high order spatial mode. The system further includes an optical transmission waveguide in optical communication with a spatial mode transformer, and the optical transmission waveguide transmits substantially all of the optical energy in the high order spatial mode. Another aspect of the invention relates to a method fortransmitting an optical signal having optical energy substantially in a single high order spatial mode. The method includes the steps of receiving the optical signal having optical energy in the single high order spatial mode, and transmitting the optical signal having optical energy in the single high order spatial mode through a transmission span. The transmission span includes an optical waveguide.
Abstract:
The invention relates to methods and apparatus for transmitting an optical signal having optical energy. The system, in one embodiment, includes at least one transmission span including an optical waveguide. The transmission span transmits substantially all of the optical energy in a single high order spatial mode. The optical wageguide, in one embodiment, has a dispersion and a dispersion slope for a given transmission bandwidth. In another embodiment the invention further relates to an optical transmission system which includes a spatial mode transformer positioned to receive an optical signal. The spatial mode transformer transform the optical energy of the optical signal from a low order spatial mode to a high order spatial mode. The system further includes an optical transmission waveguide in optical communication with a spatial mode transformer, and the optical transmission waveguide transmits substantially all of the optical energy in the high order spatial mode. Another aspect of the invention relates to a method fortransmitting an optical signal having optical energy substantially in a single high order spatial mode. The method includes the steps of receiving the optical signal having optical energy in the single high order spatial mode, and transmitting the optical signal having optical energy in the single high order spatial mode through a transmission span. The transmission span includes an optical waveguide.