Abstract:
An optical communication cable bundle is provided. The cable bundle includes a bundle jacket having an inner surface defining a bundle passage and an outer surface defining an exterior surface of the cable bundle, and a plurality of optical fiber subunits located within the bundle passage and surrounded by the bundle jacket, each optical fiber subunit having a subunit jacket defining a subunit passage and a plurality of optical fibers located with the subunit passage. A thickness of the bundle jacket is less than a thickness of each of the subunit jackets and the bundle jacket is extruded tight around the subunit jackets to couple the subunits and the bundle jacket.
Abstract:
A reduced diameter composite microcable of low weight that is capable of withstanding a tensile load of at least 300 pounds with less than 0.6% fiber strain, is capable of operation between -40 C and 70 C with less than 0.1 dB/km attenuation change at 1550 nm, and whose outer diameter is less than 15 mm is provided. The microcable includes at least one buffer tube, at least one electrical power conductor, at least one rigid strength member cabled together into a multi-unit core, wherein a plurality of optical fibers are placed within the at least one buffer tube.
Abstract:
A fiber optic cable (110) includes a jacket (112) forming a cavity (114) therein, a stack (118) of fiber optic ribbons (120) located in the cavity, and a strength member (124,126) embedded in the jacket. The jacket forms a ridge (128,130) extending into the cavity lengthwise along the fiber optic cable. The ribbon stack (118) is spiraled through the cavity such that comers (138) of the ribbon stack pass by the ridge at intermittent locations along the length of the cable, where interactions between the ridge and the comers of the ribbon stack facilitate coupling of the ribbon stack to the jacket.
Abstract:
Use of polycaprolactone plasticizer is disclosed for flexible polyvinyl chloride compounds. The compounds can pass the very demanding UL-910 plenum burn test for usage in wire and cable articles.
Abstract:
A connector assembly for an optical waveguide includes an optical waveguide and a ferrule for receiving the optical waveguide. The ferrule has an exterior and a bore defined by an interior surface of the ferrule. The ferrule includes a main body formed from a first material and a layer of a second material on the interior surface of the ferrule. The first material includes at least one of a glass, a glass-ceramic, a ceramic, and a cermet. The second material includes a silica or silica-rich phase.
Abstract:
This disclosure is directed to lighting diffusing fibers (LDFs) having a flame retardant coating thereon. The LDFs comprise a glass RAL fiber core having a primary polymer coating of a clear, colorless polymeric material having an index of refraction less than that of the glass fiber core and a flame retardant coating applied over the primary coating. The flame retardant coating consist of approximately 35-85 wt.% UV curable polymer forming monomers and 15-65 wt.% of an inorganic, halogen free filler, along with at least one photoinitiator and an antioxidant. In an embodiment phosphor-containing polymer layer can be applied between the primary coating and the flame retardant coating. In another embodiment the phosphor can be added to the flame retardant coating.
Abstract:
The present invention relates to a container for an electrical or optical conductor, the use of a gas-permeable, heat-resistant and preferably mechanically flexible or resilient casing and a construction kit for producing a cable connection or a cable joint. The container comprises an insulation (102) which is produced from an insulator which is filled with flame-retardant means and which can be fitted to the conductor (100) so as to at least partially surround it. There is further provided an outer casing (104) which is produced from a gas-permeable, heat-resistant material and which surrounds the insulation (102) in such a manner that the function of the insulation is maintained for a specific period of time in the event of a fire. The invention further relates to an associated construction kit for producing a cable connection or a cable joint.