Abstract:
Technologies are generally described for automatically managing noise profile in a predefined area by determining a desired noise profile within the predefined area, monitoring noise levels and/or frequencies within the predefined area, and adjusting operational aspects of one or more noise emitting devices in order to achieve the desired noise profile within the predefined area. A noise management system according to embodiments may be centrally controlled or organized in a distributed manner with control modules on individual noise emitting devices interacting through wired or wireless media. Furthermore, the adjustment of the operations of the noise emitting devices in order to achieve the desired noise profile may be accomplished through computing an acoustic transfer function or measuring actual noise levels/frequencies.
Abstract:
A method and system for attenuating noise comprises identifying a location in an area at which sound emitted from one or more speakers has acoustic characteristics that are substantially similar in measure to corresponding acoustic characteristics of the emitted sound at a location approximated to be near an ear of an occupant of the area. A microphone, which may be a virtual microphone, is disposed at the identified location. The microphone detects sound at the identified location. In response to the sound detected by the microphone, the one or more speakers emit a noise-canceling audio signal adapted to attenuate one or more frequencies in the sound detected by the microphone.
Abstract:
An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro- acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
Abstract:
A method for noninvasive on-line secondary path modeling for the filtered-X LMS algorithm actively controls periodic noise. The method, based in the frequency domain, uses the concept of linear independence of two equations/two unknowns to arrive at the secondary path estimate. Linear independence of two equations is achieved by adjusting the control filter output via the filter coefficients prior to the acquisition of the second set of data corresponding to the second equation.
Abstract:
A sound masking system for shaping the ambient noise level in a physical environment. The sound masking system comprises a networked and distributed system having a number of master units coupled together and to a control unit. One or more of the master units may include satellite sound masking units which function to reproduce the sound masking signal generated by the master sound masking unit. Each of the master units is addressable over the network by the control unit enabling the control unit to program the contour, spectral band, and gain characteristics of the sound masking output signal. The system may also include a remote control unit which provides the capability to tune and adjust each master sound masking unit in situ without requiring physical access through the ceiling installation. According to another aspect, there is a networked paging system with individually addressable speaker units for announcing a paging signal selected from a number of paging signals.
Abstract:
In some examples, an audio output device can provide audio setting modification based on presence detection by receiving an input from a camera in response to the camera detecting the presence of a person, and modify an audio setting of the audio output device in response to receiving the input from the camera.
Abstract:
Noises that are to be emitted by an aerial vehicle (1210) during operations may be predicted using one or more machine learning systems, algorithms or techniques. Anti-noises having equal or similar intensities and equal but out-of-phase frequencies may be identified and generated based on the predicted noises, thereby reducing or eliminating the net effect of the noises. The machine learning systems, algorithms or techniques used to predict such noises may be trained using emitted sound pressure levels observed during prior operations of aerial vehicles, as well as environmental conditions, operational characteristics of the aerial vehicles or locations of the aerial vehicles during such prior operations. Anti-noises may be identified and generated based on an overall sound profile of the aerial vehicle, or on individual sounds emitted by the aerial vehicle by discrete sources.
Abstract:
A processing circuit may comprise an adaptive filter having a response generating an antinoise signal from a reference microphone signal, a secondary path estimate filter modeling an electroacoustic path of a source audio signal, a biasing portion that generates a scaled antinoise signal by applying a scaling factor and the response of the secondary path estimate filter to the antinoise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and scaled antinoise signal.
Abstract:
A sound masking system for shaping the ambient noise level in a physical environment. The sound masking system comprises a networked and distributed system having a number of master units coupled together and to a control unit. One or more of the master units may include satellite sound masking units which function to reproduce the sound masking signal generated by the master sound masking unit. Each of the master units is addressable over the network by the control unit enabling the control unit to program the contour, spectral band, and gain characteristics of the sound masking output signal. The system may also include a remote control unit which provides the capability to tune and adjust each master sound masking unit in situ without requiring physical access through the ceiling installation. According to another aspect, there is a networked paging system with individually addressable speaker units for announcing a paging signal selected from a number of paging signals.
Abstract:
This invention relates to an improved method of on-line system identification for use with active control systems. The method requires less computation and reduces the problem of coefficient jitter in the filters (12, 22) of the active control system. The system of this invention uses a fixed test signal (y(n)) which is designed to have a particular power spectrum. In one embodiment of the invention the spectrum is chosen to be "block white", in another the spectrum is chosen to be dependent upon the spectrum of the residual signal and/or the amplitude of the system transfer function. The use of a fixed test signal reduces the computational requirement of the system identification. In another aspect of the invention, a means (model) is provided for estimating the effect of the test signal and subtracting this from the residual (error) (u(n)) signal used to adapt the control system. This greatly reduces the problem of coefficient or weight jitter.