Abstract:
Embodiments of the invention may include packaged device that may be used for reducing cross-talk between neighboring antennas. In an embodiment the packaged device may comprise a first package substrate that is mounted to a printed circuit board (PCB). A plurality of first antennas may also be formed on the first package. Embodiments may also include a second package substrate that is mounted to the PCB, and the second package substrate may include a second plurality of antennas. According to an embodiment, the cross-talk between the first and second plurality of antennas is reduced by forming a guiding structure between the first and second packages. In an embodiment the guiding structure comprises a plurality of fins that define a plurality of pathways between the first antennas and the second antennas.
Abstract:
An antenna system capable of achieving simultaneous transmit and receive (STAR) operation over a wide bandwidth includes a ring array of TEM horn elements and a centrally located monocone or bicone antenna. The TEM horn elements each include a capacitive feed. The elements of the ring array are excited using a phasing scheme that results in signal cancellation at the location of the central element. The ring array may serve as either the transmit antenna or the receive antenna.
Abstract:
L'antenne comporte au moins un guide d'onde de section rectangulaire (24) et un cylindre (21) ayant une ouverture suivant une ligne hélicoïdale, ledit cylindre ayant un mouvement de rotation relatif par rapport au guide d'onde placé à l'intérieur dudit cylindre, le guide d'onde étant ouvert en regard de la face intérieure dudit cylindre laquelle forme un court-circuit hyperfréquence pour fermer le guide, caractérisée en ce que deux cavités (62, 63) sont réalisées de chaque côté du guide, parallèlement à celui-ci, sur toute sa longueur, les ouvertures des cavités étant sensiblement dans le plan de l'ouverture (61) du guide. L'invention s'applique par exemple pour la détection d'objets cachés portés par des personnes, en particulier d'objets dangereux.
Abstract:
An antenna system (10) comprises a transmitter part (12) comprising n inputs (40.1 to 40. n) to the antenna system, a transmitter part antenna array 18 comprising k radiating elements; a respective beam-forming network (20.1 to 20. n) connected to each of the n inputs with each beam-forming network having a plurality of outputs; and k signal combiners (22.1 to 22. k) each having a plurality of inputs and a respective output. Each output of each beam-forming network is connected to a respective input of each of the signal combiners and the output of each signal combiner is connected via an output stage to a respective one of the k radiating elements. The beam-forming networks are configured such that each of the transmitter part inputs is associated with a respective transmitter part beam (24.1 to 24. n) having a respective beam-width.
Abstract:
Architectures and implementations of a transceiver system for wireless communications are presented, the system including one or more antennas supporting a single frequency band or multiple frequency bands, a transmit circuit, a receive circuit, and an isolation circuit that is coupled to the one or more antennas and the transmit and receive circuits and provides adequate isolation between the transmit circuit and the receive circuit.
Abstract:
A distributed antenna system (DAS) is described, including a wide band antenna device having respective transmit and receive antennas disposed in a single package and arranged to provide mutual isolation so that in use noise from the transmit antenna is isolated from the transmit antenna, whereby reception is possible at a frequency the same as transmission.
Abstract:
Integrating dual antennae into a single rigid assembly guarantees parallel alignment between the antennae and provides higher isolation with lower insertion loss than duplexing methods can achieve through a single antenna. The resulting higher performance at lower cost can benefit two-way communication systems using time division duplexing, frequency division duplexing, or polarization division duplexing; or combinations of these methods.
Abstract:
A sparse array antenna is disclosed. The antenna comprises series-fed antenna array columns tuned to a respective transmit and receive frequency. The transmitting and receiving radiation elements are formed with a given distance between each transmitting radiator element and each receiving radiator element, and the series-fed antenna columns are arranged in parallel, perpendicular to a symmetry line forming a symmetric interleaved transmit/receive array. Furthermore the receiving array columns operate as parasitic elements in a transmit mode and transmitting array columns operate as a parasitic elements in a receive mode, thereby reducing creation of grating lobes. The created sparse array antenna may further be arranged to be scanable to also provide reduced sidelobes entering visual space when scanning the main radiation lobe from an off boresight direction. Typically the series-fed array columns may be formed as extended ridged slotted wave-guides tuned to a respective transmitting or receiving frequency.