摘要:
Some demonstrative embodiments include apparatuses, devices, systems and methods of triggering a wireless docking session between a mobile device and a wireless docking device. For example, an apparatus may include circuitry and logic configured to cause a mobile device to detect a wireless charging of the mobile device by a wireless docking device; and to, upon detection of the wireless charging, trigger a wireless docking session between the mobile device and the wireless docking device.
摘要:
Methods, systems, and devices are described for wireless communication. A station (STA) with a host processor and a radio processor may communicate with a first access point (AP) in a first subnet. The STA may store network information for the first subnet in memory of the STA. The STA may identify a second access point and determine, by the radio processor without communication with the host processor, whether the second access point is in the first subnet or a second subnet. The determination may be based at least in part on the network information stored in memory.
摘要:
A set of servers can support secure and efficient "Machine to Machine" communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
摘要:
A base station(300), a wireless device (302)and methods thereinfor supporting radio communication, wherein the base station(300) employs carrieraggregation with multiple carriers serving a primary cell, PCell, and at least one secondary cell, SCell.Thebase station(300)signals (3:3) an SCell status to the wireless device (302), the SCell status indicating whether the at least one SCell will bein active state where thebase station(300) transmits downlink signals on a carrier serving the at least one SCell, or in inactive statewhere thebase station(300) does not transmit downlink signals on the carrier serving the at least one SCell. Thereby, thewireless device (302) canadapt its behaviour depending on the signalled SCell status, e.g. by turning off its receiver and not perform any signal measurements when the SCell is in inactive state.
摘要:
A set of servers can support secure and efficient "Machine to Machine" communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
摘要:
Many internet of things (IoT) are "sleepy" and thus occasionally go into a sleep mode. As described herein, nodes in a connected network of nodes may determine that other nodes in the network are sleepy. Further, nodes, such as endpoint devices and routers for example, may process packets in the network based on a reachability state of their neighboring nodes.
摘要:
Methods, devices, and computer program products for selective scanning of ad-hoc networks are described herein. In one aspect, a method includes receiving a message identifying a number of times the message has been forwarded. The method further includes selectively scanning for other ad-hoc networks based on the identified number. In one aspect, a root device for an ad-hoc network is responsible for generating synchronization messages for nodes of the ad-hoc network. The synchronization message includes a count of the number of times the synchronization message has been forwarded. When the hop count reaches a limit, the synchronization message is no longer retransmitted or forwarded by receiving nodes. Nodes receiving this message may recognize they are positioned near the edge of the ad-hoc network. In at least one embodiment, these nodes may selectively scan for other ad-hoc networks based on the hop count reaching or exceeding a predetermined threshold.