Abstract:
A communications system in which information is transmitted in successive time slots grouped into a plurality of superframes which are, in turn, grouped into a plurality of hyperframes. A remote station (120) is assigned to one of the time slots in each of the superframes for paging the remote station, each hyperframe including at least two superframes, and the information sent in the assigned time slot in one superframe in each hyperframe is repeated in the assigned time slot in the other superframe(s) in each hyperframe. Each superframe can include a plurality of time slots used for sending paging messages to remote stations, grouped into a plurality of successive paging frames, and the time slot to which the remote station is assigned is included once in every paging frame. Also, each superframe may include time slots comprising a logical channel for broadcast control information and time slots comprising a logical paging channel.
Abstract:
Operating at least one low duty cycle (LDC) controller to maintain synchronization between the LDC controller and a plurality of LDC terminals operating over a communication network using only overhead channels of the network and conforming to the protocol and timing of said network, wherein synchronization between the LDC controller and the plurality of LDC terminals is maintained separately from the protocol and timing of the communication network, and enables the LDC controller to schedule power down and wake up of the plurality of LDC terminals for durations longer than allowable under the protocol and timing of the communication network.
Abstract:
본 발명의 일 실시 예에 따르는 단말의 신호 송수신 방법은 기지국으로부터 신호를 수신하는 단계; 상기 수신한 신호를 기반으로 노이즈 포함 신호대 간섭 비율(Signal to Interference plus Noise Ratio, SINR)의 기대치를 계산하는 단계; 및 상기 계산된 SINR의 기대치를 기반으로 빔포밍 기법을 선택하는 단계를 포함한다. CoMP 환경에서 Adaptive ICIC를 적용하여 WSR을 극대화 하되 계산의 복잡도를 줄이되 그 성능은 기존의 방식을 통해 결정하는 것과 큰 차이가 없는 방법 및 장치를 제공함으로써 보다 원활한 통신 환경을 구축하고, 품질이 향상된 통신 환경을 사용자에게 제공할 수 있다. 또한 기지국과 통신하는 단말이 선호하는 빔포밍 방식을 선택함에 있어 그 복잡도를 낮춤으로써 시스템의 복잡도가 줄어들고, 보다 빠른 연산 속도와 높은 전력 효율성을 제공할 수 있다. 또한 기지국이 보다 용이하게 최적의 통신환경을 가지는 사용자 그룹 및 빔포밍 기법 그룹을 선택할 수 있도록 한다.
Abstract:
Operating at least one low duty cycle (LDC) controller to maintain synchronization between the LDC controller and a plurality of LDC terminals operating over a communication network using only overhead channels of the network and conforming to the protocol and timing of said network, wherein synchronization between the LDC controller and the plurality of LDC terminals is maintained separately from the protocol and timing of the communication network, and enables the LDC controller to schedule power down and wake up of the plurality of LDC terminals for durations longer than allowable under the protocol and timing of the communication network.
Abstract:
This invention relates to a cellular radio system which comprises subscriber units (7), and a base station (BS) comprising a transmitter (TX), a receiver (RX) and means for establishing a telecommunication connection to the subscriber units (7) of the system. In order to improve the audibility of the system, the transmitter (TX) of the base station (BS) comprises means for supplying telecommunication signals to a community antenna system, and the receiver (RX) of the base station comprises means for receiving telecommunication signals transmitted from the community antenna system (3). The system further comprises a repeater (11) which comprises a connection unit (20) for connecting the repeater to the community antenna system (3), and an antenna means for establishing a telecommunication connection to the subscriber unit (7) on radio frequency signals, whereby the repeater (11) is arranged to transmit telecommunication signals between the subscriber unit (7) and the community antenna system (3). The invention also relates to a base station and a repeater.
Abstract:
A system and method of processing information regarding medical devices in wireless communication with each other is provided in which a handheld device has a first wireless communication link with a first medical device, such as a glucose sensor, and a second wireless communication link with a second medical device, such as an insulin pump. A processor in the handheld device monitors the status of the first and second wireless links and upon noting a change in status of either one, compares the first wireless link status with the second wireless link status and provides guidance for resolving a communication problem based on the comparison. The latency of the medical devices is considered as well as the ability to make system status changes, extend time periods before alarms are issued, and the characteristics of the medical devices are considered.
Abstract:
A process for transmitting spoken information (si) between a transmitter (S) and a receiver (E) via at least one radio channel (F) in which the transmission quality is enhanced in that speech pauses (sp) within the spoken information (si) are detected, control information (st) representing the timing of the speech pauses (sp) within the spoken information (si) is generated and this is transmitted via the radio channel (F) at the right time in addition to the spoken information (si) and the control information (st) is evaluated in the terminal device (E) in such a way that the speech pauses (sp) are inserted into the spoken information (si) at the correct time. The process is especially suitable for the digital transmission of spoken information (si) in wireless communications on the DECT standard.