Abstract:
Disclosed is a single-crystal ingot manufacturing apparatus, which includes a crucible in which a melt is accommodated, a heater configured to heat the crucible, a heat shield member configured to shield radiant heat from the heater and the melt, and a neck cover configured to encompass a seed crystal unit above the crucible with being introduced into an opening of the heat shield member, the radiant heat being not shielded in the opening, the neck cover being vertically moved in linkage to vertical movement of the seed crystal unit within a predetermined range.
Abstract:
Molded articles are described herein having a surface feature thereon, the articles being formed include a polymeric composite material having reinforcing fibers in a polymeric matrix material. The surface feature(s) is created during heat molding of the polymeric composite material to form the article and the surface feature(s) include the polymeric matrix material and the reinforcing fibers therein. A method is also described which provides surface feature(s) to a molded article by providing a composite material, placing the composite material in a mold for forming an article having a surface feature thereon, and molding the composite material using bladder inflation molding and pushing the reinforcing fibers into the surface feature of the molded article during molding using a heat molding process having a bladder inflation molding step.
Abstract:
An ultrathin tellurium nanowire structure is disclosed, including a rod-like crystalline structure of tellurium, wherein the crystalline structure is defined by diameters of between 5 - 6 nm. In addition, an ultrathin tellurium-based nanowire structure is disclosed including a rod-like crystalline structure of one of lead telluride and bismuth telluride, wherein an ultrathin tellurium nanowire structure is used as a precursor to generate the rod-like crystalline structure. Furthermore, a nanoscale heterostructure tellurium-based nanowire structure is disclosed including a dumbbell-like crystalline heterostructure having a center rod-like portion and one octahedral structure connected to each end of each of the center rod- like portions, wherein the center rod-like portion is a tellurium-based nanowire structure and the octahedral structures are one of lead telluride, cadmium telluride, and bismuth telluride.
Abstract:
The present invention comprises nano obelisks and nanostructures and methods and processes for same. The nano obelisks of the present invention are advantageous structures for use as electron source emitters. For example, the ultra sharp obelisks can be used as an emitter source to generate highly coherent and high energy electrons with high current.
Abstract:
A biomedia apparatus comprising an elongated central core and a plurality of loops positioned along the central core adapted to collect organisms from water. The biomedia apparatus may further comprise at least one reinforcing member associated with the central core. In one embodiment, the biomedia apparatus is utilized in a trickle tower to treat wastewater. In another embodiment, the biomedia apparatus is utilized outside a power plant to minimize spat that is drawn into the plant through water intake valves.
Abstract:
Biomaterials in the form of non-woven felts, comprising carboxymethylcellulose salified with zinc associated with hyaluronic derivatives at varying percentages, for use in surgery to treat various kinds of wounds, pressure sores, burns, and in all conditions requiring the association of a wound healing and protective action with an antibacterial and/or antifungal action.
Abstract:
The present invention is a method of applying Lotus Effect materials as a (superhydrophobicity) protective coating for external electrical insulation system applications, as well as the method of fabricating/preparing Lotus Effect coatings. Selected inorganic or polymeric materials are applied on the insulating material surface, and stable superhydrophobic coatings can be fabricated. Various UV stabilizers and UV absorbers can be incorporated into the coating system to enhance the coating's UV stability.