Abstract:
A desuperheater includes a ring body defining an axial flow path and one or more spray nozzle assemblies around the ring body. Each spray nozzle assembly is connected to a separate water manifold and steam manifold to provide cooling water and atomizing steam through the spray nozzle assemblies. A nozzle sleeve of each spray nozzle assembly has a solid, unitary body having first, second, and third fluid passages formed through the body. The first fluid passage is in fluid communication with the water manifold and with a first exit aperture formed in a second end of the body. The second fluid passage is in fluid communication with the steam manifold and with a second exit aperture formed in the second end of the body. The third fluid passage is in fluid communication with the steam manifold and with a third exit aperture formed in the second end of the body. The second and third exit apertures are positioned on opposite sides of the first exit aperture.
Abstract:
The invention is a method for producing a mixture of powder or granular state material and liquid, in the course of which a first mixture is produced by conveying the powder or granular state material through an inlet hopper (18) into an upper mixing space (10) and by feeding the liquid into the upper mixing space (10), the first mixture is introduced into a lower mixing space (12) through a conducting pipe (16) connecting a bottom part of the upper mixing space (10) and an upper part of a lower mixing space (12) having a cylindrical space portion and a conical space portion, and a second mixture is produced by causing it to collide into a baffle member (20), the second mixture is discharged through the conical space portion arranged at the bottom part of the lower mixing space (12). By dividing the second mixture, a first mixture portion is discharged as a mixture material, a second mixture portion is recirculated into the upper mixing space, and a third mixture portion is conveyed into the upper part of the lower mixing space. The ratio of the first mixture portion to the second mixture portion is chosen to a value between 1:1 and 1:4, the ratio of the first mixture portion to the third mixture portion is chosen to a value between 1:1 and 1:5, and in the lower mixing space the amount of the second mixture is adjusted so that the surface of the second mixture is within the cylindrical space portion of the lower mixing space and is spaced from the baffle member.
Abstract:
Liquid treatment apparatus comprises at least two chambers being first and second chambers through which a fluid can flow. The two chambers are separated by at least one choke nozzle which has an entrance in the first chamber and an exit in the second chamber. The choke nozzle (1) comprises a converging section at its entrance (3), a throat section (4), a backward-facing step (5) immediately after the throat section (4), and an exit section at its exit (6) wherein the exit section (6) diverges from the step (5). Similarly constructed mixing nozzles (1) may be included in the apparatus. The apparatus is especially useful in processes requiring a gas to be entrained in a fluid so that the gas is in the form of very small bubbles that do not tend to coalesce and flash off such as in the dissolution of gold and other precious metals from ore in the removal of arsenic from an ore.
Abstract:
본 발명은 교반장치의 임펠러 및 이를 이용한 교반장치에 관한 것으로써, 특히, 축과, 상기 축에 설치되는 콘을 포함하는 교반장치의 임펠러를 포함하여, 노즐에서 떨어지는 폴리머와 같은 교반대상물이 콘을 따라 천천히 흐르게 하여 교반대상물에 포함된 공기방울을 효과적으로 제거할 수 있는 것에 관한 것이다.
Abstract:
The present invention is directed to simple and economical systems and methods for facilitating the control of dissolution of one or more gases into a liquid, such as water, while maintaining a constant flow of the liquid into and out of an enclosed vessel. Preferred gases for use with the disclosed systems and methods are oxygen, air, ozone, and carbon dioxide. Preferred applications include, for example, oxygenation and/or ozonation treatment of rivers, streams, lakes, ponds, and basins in natural, municipal, or industrial settings and wastewater treatment. More specifically, the present invention is directed to systems for delivering a fluid having a desired dissolved gas concentration that include, inter alia, a dissolution tank assembly that has a pressure vessel which defines an internal chamber for containing a fluid and provides a regulated, pressurized gas head space above the fluid; at least one liquid spray nozzle that permits passage of the fluid into the gas head space of the pressure vessel; and an outlet for discharging the fluid having a desired gas concentration from the pressure vessel. The systems further include a gas source in communication with the gas head space of the pressure vessel and a pumping mechanism for supplying the fluid to the spray nozzle of the dissolution tank, such that fluid droplets are formed and the gas contained within the pressurized head space is dissolved into the fluid. Also provided is a device for detecting the level of the fluid in the internal chamber of the pressure vessel and a mechanism for adjusting the level of fluid in the pressure vessel in order to achieve the desired dissolved gas concentration within the fluid. Preferred gases for use with method are oxygen, air, ozone, and carbon dioxide, and preferred applications include oxygenation and/or ozonation treatment of rivers, streams, lakes, ponds, wastewater and basins in natural, municipal, or industrial settings.
Abstract:
Die vorliegende Erfindung betrifft eine Vorrichtung zum Herstellen von mit Verstärkungsfasern durchsetzten Kunststoff teilen mit einer Mischkammer (20) zum Erzeugen eines Gemisches aus chemisch reaktiven Kunststoffkomponenten, mit einer der Mischkammer nachgeordneten Auslaufkammer (38), in der ein Reinigungskolben (28) hin- und her beweglich geführt ist, in dem ein Faser-Förderkanal (32) ausgebildet ist. Die Erfindung ist dadurch gekennzeichnet, dass an der Stirnseite des Reinigungskolbens eine Düse (34) vorgesehen ist, durch die sich der Faser-Förderkanal (32) erstreckt und an deren Außenumfang ein -von dem Ende der Düse (34) beabstandete Ringnut (40) angeordnet ist, die derart positionierbar ist, dass in einer ersten Arbeitsposition eine Strömungsverbindung zwischen der Mischkammer (20) und der Ringnut (40) gebildet ist und in einer anderen Arbeitsposition des Reinigungskolbens (28) die Strömungsverbindung zwischen der Mischkammer (20) und der Ringnut (40) unterbrochen ist, dass zwischen der Ringnut (40) und dem auslassseitigen Ende der Düse (34) zumindest ein, vorzugsweise eine Mehrzahl von Düsenkanälen (42) in der Düse ausgebildet sind, die stirnseitig in die Auslaufkammer (38) münden.
Abstract:
A mixing device for incorporating a light gas at low pressure into a working fluid at a very high pressure includes a mixing section in the form of a truncated conical section between an inlet and an outlet, a plurality of inlets for the light gas into the mixing section, and a plurality of passages through the truncated conical section into a cylindrical section leading to the outlet.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren und Einrichtung zum dosierten Zuführen eines flüssigen Additivs zu einem Kunststoffgranulat in einem Stranggiessprozess. Beim Verfahren wird mittels Druckbeaufschlagung mit einem Inertgas das Additiv zwischen das Kunststoffgranulat eingespritzt. Das Inertgas seinerseits wird mit Druckluft beaufschlagt. Die Entrichtung ist mit einem, geschlossenen Dosierbehälter (123) zur Aufnahme eines flüssigen Additivs ausgestattet, an welchem Dosierbehälter (123) eine Austrittsöffnung für das abzugebende Additiv vorgesehen ist. Es sind eine Inertgasquelle (122) und wenigstens eine Inertgasleitung (121) mit einem Absperrventil (127) vorhanden. Die Inertgasleitung (121) steht einerseits mit dem Dosierbehälter (123) und andererseits mit der Inertgasquelle (122) in Verbindung. Es ist eine zusätzliche Überdruckquelle (120) mit einen Druckmedium, vorzugsweise eine Luftdruckquelle, vorhanden. Die Inertgasleitung (121) steht über ein Druck übertragendes und das Druckmedium vom Inertgas trennendes Interface (111) mit dieser Überdruckquelle (120) in Verbindung.