Abstract:
Exemplary chemical looping systems include at least one type of active solid particles and inert solid particles that may be provided between various reactors in exemplary systems. Certain chemical looping systems may include a reducer reactor in fluid communication with a combustor reactor. Some chemical looping systems may additionally include an oxidizer reactor in fluid communication with the combustor reactor and the reducer reactor. Generally, active solid particles are capable of cycling between a reduction reaction and an oxidation reaction. Generally, inert solid particles are not reactants in either the reduction reaction or the oxidation reaction.
Abstract:
A circulating fluidized bed boiler (1), comprising a furnace (50), a loopseal (5), and a loopseal heat exchanger (10) arranged in the loopseal (5). The loopseal heat exchanger (10) comprises at least an inlet chamber (100), a bypass chamber (200), and a first heat exchange chamber (310), heat exchanger pipes (810) arranged in the first heat exchange chamber (310), and a primary particle outlet (610) for letting out bed material from the first heat exchange chamber (310). The primary particle outlet (610) has at least a first part (611) and a second part (612) separated from each other by a barrier element (401) in such a way that the first part (611) of the primary particle outlet (610) has a first height (h1) and a first width (w1), wherein a ratio (h1/w1) of the first height (h1) to the first width (w1) is less than 0.5 or more than 2. Use of the circulating fluidized bed boiler (1) such that fluidizing gas and bed material are let out from the first heat exchange chamber (310) via the primary particle outlet (610).
Abstract:
It is the aim of the present invention to provide a process and a system for the gasification and/or combustion of biomass and/or coal with an at least partial carbon dioxide separation enabling an effective gasification as well as an un-expensive and effective separation of carbon dioxide thereby achieving a long-term stability of the materials used in the process. These objectives are achieved by a process for the gasification and/or combustion of biomass and/or coal with an at least partial carbon dioxide separation using a combined combustion/gasification reactor (2) having a combustion part (6) and a gasification part (4), comprising the steps of: a) feeding the coal and/or feeding biomass into the gasification part (4) of the combustion/gasification reactor (2); b) in the gasification part (4), optionally under a feed of water or water vapour, heating and optionally pressuring the coal and/or the biomass at an elevated temperature and at an optionally elevated pressure in order to generate a product gas (8); c) filtering the product gas (8) to separate ash, soot and other solid particles from the product gas (8); d) feeding the filtered product gas (8')and an oxidized bed material (20) into the combustion part (6) of the combustion/gasification reactor (2); e) in the combustion part (6), at least partially reducing the oxidized bed material (20) in order to generate heat that is being transferred partially into the gasification part (4); f) leading the exhaust gas (16) of the combustion part (6) to a turbine or a heat exchanger or into a further combustion reactor (18) or a catalytic conversion and leading the at least partially reduced bed material (22) into an oxidation reactor (24) fed with air (26) in order to re-oxidize the bed material prior to its recirculation into the combustion part (6).
Abstract:
L'invention a pour objet un dispositif de combustion en boucle chimique utilisant un combustible solide générant des particules d'imbrûlés et mettant en œuvre des particules de porteur d'oxygène, telles que des oxydes métalliques, et comportant au moins une zone de combustion et un séparateur de particules contenues dans un mélange gazeux provenant de la zone de combustion, dans lequel le séparateur comprend au moins une enceinte (1) avec une conduite d'admission (4) dudit mélange, une conduite d'évacuation (5) située en partie inférieure de l'enceinte et une conduite de sortie (6) située en partie supérieure du dispositif, les paramètres d'admission et d'évacuation/sortie étant choisis pour créer dans l'enceinte une phase dense en partie inférieure et une phase diluée en partie supérieure, et dans lequel ladite conduite d' admission débouche dans la phase diluée. L'invention porte également sur un procédé de combustion mettant en œuvre le dispositif selon l'invention.
Abstract:
Le dispositif de combustion selon l'invention , produit des fumées contenant du CO 2 de la vapeur d'eau et comprend une chambre de réaction (1, 2) à lit fluidisé circulant un séparateur (10, 20), des moyens récupérateur de chaleur dont une partie est disposée dans un lit fluidisé dense (12, 12a, 22) , il est caractérisé en ce que la partie des moyens récupérateur de chaleurs disposée dans le lit sont constitués de tubes catalytiques (120, 120a, 220) parcourus par un mélange de gaz. Le mélange de gaz est composé de gaz naturel et/ou de naphte ou du gaz de raffinerie ou des deux ou de plusieurs de ces gaz. Le gaz subit un reformage qui le transforme en gaz de synthèse contenant de l'hydrogène. Le fait de disposer les tubes catalytiques dans le lit fluidisé dense constitué par les cendres issues de la combustion permet de réchauffer le catalyseur de façon homogène et de favoriser la réaction de réformage du mélange de gaz naturel.
Abstract:
A recuperative and conductive heat transfer system (10, 10') that is operative to effect therewith the heating within the second portion (20, 20') of the heat transfer system (10, 10') of a "working fluid" flowing through the heat transfer surfaces (32, 32') as a consequence of the transfer thereto by conduction of heat from a multiplicity of regenerative solids (24, 24'). The multiplicity of regenerative solids (24, 24') derive their heat from a recuperation thereby within the first portion (12, 12') of the heat transfer system (10, 10') from either an internally generated or an externally generated source of heat (22, 22').
Abstract:
Aspects provide for volatilizing a biomass-based fuel stream, removing undesirable components from the resulting volatiles stream, and combusting the resulting stream (e.g., in a kiln). Removal of particles, ash, and/or H2O from the volatiles stream improves its economic value and enhances the substitution of legacy (e.g., fossil) fuels with biomass-based fuels. Aspects may be particularly advantageous for upgrading otherwise low-quality biomass to a fuel specification sufficient for industrial implementation. A volatilization reactor may include a fluidized bed reactor, which may comprise multiple stages and/or a splashgenerator. A splashgenerator may impart directed momentum to a portion of the bed to increase bed transport via directed flow.
Abstract:
Aspects provide for volatilizing a biomass-based fuel stream, removing undesirable components from the resulting volatiles stream, and combusting the resulting stream (e.g., in a kiln). Removal of particles, ash, and/or H2O from the volatiles stream improves its economic value and enhances the substitution of legacy (e.g., fossil) fuels with biomass-based fuels. Aspects may be particularly advantageous for upgrading otherwise low-quality biomass to a fuel specification sufficient for industrial implementation. A volatilization reactor may include a fluidized bed reactor, which may comprise multiple stages and/or a splashgenerator. A splashgenerator may impart directed momentum to a portion of the bed to increase bed transport via directed flow.
Abstract:
Various aspects provide for a multistage fluidized bed reactor, particularly comprising a volatilization stage and a combustion stage. The gas phases above the bed solids in the respective stages are separated by a wall. An opening (e.g., in the wall) provides for transport of the bed solids from the volatilization stage to the combustion stage. Active control of the gas pressure in the two stages may be used to control residence time. Various aspects provide for a fuel stream processing system having a pretreatment reactor, a combustion reactor, and optionally a condensation reactor. The condensation reactor receives a volatiles stream volatilized by the volatilization reactor. The combustion reactor receives a char stream resulting from the removal of the volatiles by the volatilization reactor.