복사냉각 다층 필름
    1.
    发明申请

    公开(公告)号:WO2023090702A1

    公开(公告)日:2023-05-25

    申请号:PCT/KR2022/017057

    申请日:2022-11-02

    Abstract: 복사냉각 다층 필름에 있어, 실질적인 복사 냉각 성능이 구현되면서, 후가공 공정이 용이한 구조의 복사냉각 다층 필름이 개시된다. 본 발명은 제1 유전체 입자가 분산된 제1 고분자를 포함하는 제1 적외선 방사층; 제2 유전체 입자가 분산된 제2 고분자를 포함하는 제2 적외선 방사층; 제3 유전체 입자가 분산된 제3 고분자를 포함하는 제3 적외선 방사층; 및 제4 고분자를 포함하는 제4 적외선 방사층;을 포함하고, 상기 제1 유전체 입자, 상기 제2 유전체 입자 및 상기 제3 유전체 입자는 서로 같거나 다른 종류인 복사냉각 다층 필름을 제공한다.

    ELASTOKALORISCHES ELEMENT FÜR EIN TEMPERIERSYSTEM

    公开(公告)号:WO2023030742A1

    公开(公告)日:2023-03-09

    申请号:PCT/EP2022/070189

    申请日:2022-07-19

    Abstract: Die Erfindung betrifft ein elastokalorisches Element (1) für ein Temperiersystem (4), wobei das elastokalorische Element (1) einen elastischen Träger (2) und eine auf den Träger (2) aufgebrachte Beschichtung (3) aufweist, wobei der Träger (2) zumindest teilweise aus einem Kunststoff besteht und die Beschichtung (3) zumindest teilweise aus einem elastokalorischen Material besteht.

    THERMOELASTISCHE ENERGIEWANDLUNGSVORRICHTUNG ZUM ERWÄRMEN UND ABKÜHLEN EINES MEDIUMS

    公开(公告)号:WO2023006159A1

    公开(公告)日:2023-02-02

    申请号:PCT/DE2022/200154

    申请日:2022-07-12

    Abstract: Eine thermoelastische Energiewandlungsvorrichtung (1a, 1b) zum Erwärmen und Abkühlen eines Mediums (2) umfasst ein Gehäuse (10) zur Aufnahme des Mediums (2). In dem Gehäuse (10) sind mindestens ein erster und ein zweiter Strömungskanal (11, 12) zum Führen des Mediums (2) angeordnet. Der mindestens eine erste und der mindestens eine zweite Strömungskanal (11, 12) sind durch eine Transitionszone (13) voneinander getrennt. Zwischen der Transitionszone (13) und mindestens einem des ersten und zweiten Strömungskanals (11, 12) ist mindestens ein Durchlassventil (70) zum Einströmen des Mediums (2) von mindestens einen des ersten und zweiten Strömungskanals (11, 12) in die Transitionszone (13) angeordnet.

    SYSTEM AND METHOD FOR WORK RECOVERY IN A HEAT PUMP

    公开(公告)号:WO2021023688A1

    公开(公告)日:2021-02-11

    申请号:PCT/EP2020/071754

    申请日:2020-08-02

    Applicant: EXERGYN LTD.

    Abstract: The invention provides a heat pump system and method heat pump system comprising a first Shape-Memory Alloy (SMA) or Negative Thermal Expansion (NTE) core and adapted to convert movement of the core into energy in response to a temperature change. A second Shape-Memory Alloy (SMA) or Negative Thermal Expansion (NTE) core in fluid communication with the first core and adapted to convert movement of the second core into energy. A third Shape-Memory Alloy (SMA) or Negative Thermal Expansion (NTE) or elastocaloric core in fluid communication with the first and second cores and adapted to convert movement of the third core into energy. The first core, second core and the third core are arranged in series and a control system provides waste pressure from the first core to the second core and/or third core.

    SYSTEM AND METHOD FOR MAXIMISING HEAT OUTPUT AND TEMPERATURE DELTA IN A SMA HEAT PUMP/REFRIGERATION SYSTEM

    公开(公告)号:WO2021023680A1

    公开(公告)日:2021-02-11

    申请号:PCT/EP2020/071745

    申请日:2020-08-01

    Applicant: EXERGYN LTD.

    Abstract: The invention provides a heat pump system and method comprising a first Shape-Memory Alloy (SMA) or Negative Thermal Expansion (NTE) elastocaloric core positioned in a housing and adapted to absorb heat and store energy in response to a first fluid inputted at a first temperature. The housing is configured to receive the first fluid at a first temperature via an inlet to cause the first SMA or NTE elastocaloric core to change state. A device is configured to apply stress on the first SMA or NTE core in the housing to cause the SMA or NTE elastocaloric core to change state, releasing heat/energy and causing the SMA/NTE to heat up. A second fluid at a higher temperature is inputted and then subsequently heated further as a result of heat transfer. A second Shape-Memory Alloy (SMA) or Negative Thermal Expansion (NTE) or elastocaloric core is positioned in a cascade arrangement with the first core, but exhibiting a higher activation temperature. The higher temperature fluid leaving core 1 is inputted into core 2, resulting in a larger net temperature lift than could be achieved with a single core. In the alternative, in a cooling system, to achieve a lower temperature drop, the second core in the cascade can exhibit a lower activation temperatures than the first core. The cycle focus is on the endothermic stress release component where the SMA/NTE/elastocaloric core absorbs energy from the fluid. The first core results in a fluid stream drop and that then enters the second core with lower activation temperatures, resulting in a further drop of the output fluid during the cooling half of the cycle.

Patent Agency Ranking