Abstract:
An in-line, contactless and non-destructive method for detecting and identifying defects in a moving cardboard structure is provided, as well as the associated system. The cardboard structure is of the type made of layered paper plies, such as cardboard tubes for example. The method includes the steps of emitting acoustic waves with predetermined frequencies toward the moving cardboard structure. The acoustic waves are converted into mechanical waves propagating through the moving cardboard structure. The method also includes a step of capturing the acoustic waves propagated, wherein said captured acoustic waves result from a conversion of the propagated mechanical waves through the moving cardboard structure. The method also provides steps of analyzing the captured acoustic waves; and detecting and identifying defects in the moving laminated cardboard structure based on predetermined propagation properties measured from the captured acoustic waves.
Abstract:
A method and system for ultrasonic inspection of an axle is disclosed. An ultrasonic probe and wedge are placed on the radial surface of an outboard journal of the axle and an ultrasonic scan is directed toward the inboard journal, wherein the devices mounted on the inboard journal remain mounted during the ultrasonic scan.
Abstract:
The invention relates to an axle pin inspection apparatus consisting of: (i) at least one ultrasound probe (SU) for analysing selected portions of a wall (PA) (having known variable outside and inside radius profiles) of a tubular axle pin (AE) in a selected angular sector and, thereby, acquiring analysis data; (ii) inspection means (MC) for determining at least a first and at least a second selected location at which each probe (SU) is to be positioned manually on the outer surface (SE) or inner surface (SI) of the wall (PA), as a function of the profiles and optionally the loading and environment of the pin, so that the probe analyses at least a first and at least a second selected portion of the wall (PA) respectively in at least a first and at least a second selected angular sector oriented along first and second opposing longitudinal or transverse directions and so that the probe acquires analysis data for different relative angular positions of the pin in relation to the probe; and (iii) processing means (MT) for producing charts on the basis of said analysis data, which charts represent the transverse or longitudinal orientations and the echo indication positions inside the wall (PA).
Abstract:
Un appareil de contrôle d'axes d'essieu comprend i) au moins une sonde à ultrasons (SU) chargée d'analyser dans un secteur angulaire choisi des portions choisies d'une paroi (PA) (présentant des profils de rayons extérieur et intérieur variables et connus) d'un axe d'essieu tubulaire (AE), et ainsi acquérir des données d'analyse, ii) des moyens de contrôle (MC) chargés de déterminer, en fonction des profils et d'éventuels encombrement et environnement de l'axe, au moins un premier et au moins un deuxième endroits choisis sur la surface externe (SE) ou interne (SI) de la paroi (PA) où doit être placée manuellement chaque sonde (SU), de sorte qu'elle analyse au moins une première et au moins une deuxième portions choisies de la paroi (PA) respectivement dans au moins un premier et au moins un deuxième secteurs angulaires choisis, orientés suivant des premier et second sens longitudinaux ou transversaux opposés, et qu'elle acquière ainsi des données d'analyse pour différentes positions angulaires relatives de l'axe par rapport à elle, et iii) des moyens de traitement (MT) chargés de constituer à partir de ces données d'analyse des cartes représentant les orientations transversales ou longitudinales et les positions d'indications d'échos au sein de la paroi (PA).
Abstract:
Document inspection system comprising a transport system for transporting documents along a transport path (12) through an inspection station. At least one ultrasonic inspection apparatus at the inspection station, the apparatus including ultrasonic transmitting and receiving transducers (42,44) arranged on opposite sides of the transport path, and a processing system for monitoring ultrasonic signals received by the receiving transducer. An ultrasonic absorbing material (300) is provided around the transducers and facing the transport path for absorbing ultrasound reflected by a document. Document guide apparatus (312,314), having a lower coefficient of friction than the absorbing material, extends partially over the absorbing material (300) so as to prevent documents contacting the absorbing material in use while leaving the absorbing material exposed to the transport path at least adjacent the transducers.
Abstract:
A method, in a high-voltage cable (1) comprising a central conductor (2) consisting of one or more strands (2a), an inner semiconductive layer (3) and a surrounding insulating layer (4), of measuring the topography (3a, 3c, 3d, 3e, 3f, 3g) at the interface between the inner semiconductive layer (3) and the insulating layer (4). A plurality of probes are used, arranged in a fixed array, spatially fixed at the outside of the cable, to emit ultrasound, with a frequency of between 0.1 MHz and 20 MHz, preferably between 0.5 MHz and 5 MHz, in the form of pulses, and to receive (detect) reflected sound (echo). The probes are activated systematically, one at a time, or a few at a time, such that the pulses are emitted from the probes cyclically with a time lag between the pulses, whereas reflected sound is detected in a plurality of, or in all of, the probes.
Abstract:
Examples of the present subject matter provide techniques for measuring thicknesses of materials using one or more acquisition cycles. The data from the one or more acquisition cycles may be amplified using a specified gain across the signal response, converted to a digital signal, and stored in a memory. The digital signal may be retrieved from memory, and signal processing techniques using one or more time-variable threshold(s) may be used to calculate one or more thickness(es) of the testing object.
Abstract:
A system for non-destructively inspecting tubes is provided. The system may include a tank filled with a fluid, e.g., water. The tank may define an axial passage within it for tube insertion, and the tank may include an opening to the axial passage. A transducer probe may be disposed inside the tank and oriented toward the opening to the axial passage. The system may also include a movable seal including a chamber, configured to move axially in the axial passage, and a membrane positioned in the opening of the tank. During inspection, an acoustic pathway may be provided between the transducer probe and the tube, the pathway including fluid in the tank, the membrane, and fluid in the chamber.
Abstract:
Die Erfindung betrifft eine Prüfvorrichtung (1) zur zerstörungsfreien Prüfung von rotationssymmetrischen Objekten, insbesondere von Rotoren (2) von Gas- oder Dampfturbinen, wobei diese wenigstens drei längliche, sich in einer Umfangsrichtung (U) und parallel zueinander erstreckende sowie miteinander verbundene Kufenkörper (5, 6, 7) aufweist, die Auflageflächen zum Aufstellen auf der Umfangsfläche (4) des zu prüfenden Objekts definieren, wobei zumindest am mittleren Kufenkörper (6) eine Prüfkopfaufnahme (20) für einen Ultraschallprüfkopf vorgesehen ist.